Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hypertension ; 81(3): 426-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675565

RESUMO

Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.


Assuntos
Hipertensão , Sódio , Humanos , Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Células Endoteliais/metabolismo , Cloreto de Sódio , Pressão Sanguínea/fisiologia
3.
Cell Metab ; 35(2): 299-315.e8, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754020

RESUMO

FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.


Assuntos
Sódio , Linfócitos T Reguladores , Humanos , Sódio/metabolismo , Autoimunidade , Fatores de Transcrição Forkhead/metabolismo
4.
Handb Exp Pharmacol ; 277: 165-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355219

RESUMO

The understanding of biochemical processes of metabolism is gained through the measurement of the concentration of intermediates and the rate of metabolite conversion. However, the measurement of metabolite concentrations does not give a full representation of this dynamic system. To understand the kinetics of metabolism, the system must be described and quantified in terms of metabolite flow as a function of time. In order to measure the metabolite flow, or more precisely the metabolic flux through a biological system, substrates of the cell are labelled with stable isotopes. The usage of these substrates by the cell leads to the incorporation of the isotopes into downstream intermediates.The most important metabolic pathways are encompassed in the central carbon metabolism (CCM). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the central carbon metabolism "is the most basic aspect of life". It includes all metabolites and enzymatic reactions within: glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), amino acids and nucleotide metabolic pathways. Some molecules are at the crossroad of metabolic pathways, interconnecting diverse metabolic and therefore functional outcomes. Labelling these nodal metabolites and analysing their isotopic composition allows the precise determination of the metabolic flow within the biochemical networks that they are in.Application of stable isotope labelled substrates allows the measurement of metabolic flux through a biochemical pathway. The rapid turnover of metabolites in pathways requires pulse-feeding cells with a labelled substrate. This method allows for the determination of different cell states. For example, the action of a drug from immediate impact until the compensatory response of the metabolic system (cell, organs, organisms). Pulsed labelling is an elegant way to analyse the action of small molecules and drugs and enables the analysis of regulatory metabolic processes in short time scales.


Assuntos
Carbono , Isótopos , Humanos , Carbono/metabolismo , Metabolômica/métodos , Redes e Vias Metabólicas
5.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985814

RESUMO

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Fator de Necrose Tumoral alfa , Criança , Adolescente
6.
Front Mol Biosci ; 9: 859787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032676

RESUMO

Cellular glutamine synthesis is thought to be an important resistance factor in protecting cells from nutrient deprivation and may also contribute to drug resistance. The application of ?targeted stable isotope resolved metabolomics" allowed to directly measure the activity of glutamine synthetase in the cell. With the help of this method, the fate of glutamine derived nitrogen within the biochemical network of the cells was traced. The application of stable isotope labelled substrates and analyses of isotope enrichment in metabolic intermediates allows the determination of metabolic activity and flux in biological systems. In our study we used stable isotope labelled substrates of glutamine synthetase to demonstrate its role in the starvation response of cancer cells. We applied 13C labelled glutamate and 15N labelled ammonium and determined the enrichment of both isotopes in glutamine and nucleotide species. Our results show that the metabolic compensatory pathways to overcome glutamine depletion depend on the ability to synthesise glutamine via glutamine synthetase. We demonstrate that the application of dual-isotope tracing can be used to address specific reactions within the biochemical network directly. Our study highlights the potential of concurrent isotope tracing methods in medical research.

7.
Circulation ; 144(2): 144-158, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33906377

RESUMO

BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of [Formula: see text] and [Formula: see text] respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.


Assuntos
Mitocôndrias/metabolismo , Fagócitos/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
9.
PLoS Biol ; 18(6): e3000722, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32569301

RESUMO

Inflammation and infection can trigger local tissue Na+ accumulation. This Na+-rich environment boosts proinflammatory activation of monocyte/macrophage-like cells (MΦs) and their antimicrobial activity. Enhanced Na+-driven MΦ function requires the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5), which augments nitric oxide (NO) production and contributes to increased autophagy. However, the mechanism of Na+ sensing in MΦs remained unclear. High extracellular Na+ levels (high salt [HS]) trigger a substantial Na+ influx and Ca2+ loss. Here, we show that the Na+/Ca2+ exchanger 1 (NCX1, also known as solute carrier family 8 member A1 [SLC8A1]) plays a critical role in HS-triggered Na+ influx, concomitant Ca2+ efflux, and subsequent augmented NFAT5 accumulation. Moreover, interfering with NCX1 activity impairs HS-boosted inflammatory signaling, infection-triggered autolysosome formation, and subsequent antibacterial activity. Taken together, this demonstrates that NCX1 is able to sense Na+ and is required for amplifying inflammatory and antimicrobial MΦ responses upon HS exposure. Manipulating NCX1 offers a new strategy to regulate MΦ function.


Assuntos
Macrófagos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Processamento Alternativo/genética , Animais , Cálcio/metabolismo , Espaço Extracelular/metabolismo , Inativação Gênica/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Íons , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Células RAW 264.7 , Cloreto de Sódio/farmacologia
10.
Hypertension ; 75(1): 202-210, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786987

RESUMO

Preeclampsia is associated with increased cardiovascular long-term risk; however, the underlying functional and structural mechanisms are unknown. We investigated maternal cardiac alterations after preeclampsia. Female rats harboring the human angiotensinogen gene [TGR(hAogen)L1623] develop a preeclamptic phenotype with hypertension and albuminuria during pregnancy when mated with male rats bearing the human renin gene [TGR(hRen)L10J] but behave physiologically normal before and after pregnancy. Furthermore, rats were treated with pravastatin. We tested the hypothesis that statins are a potential therapeutic intervention to reduce cardiovascular alterations due to simulated preeclamptic pregnancy. Although hypertension persists for only 8 days in pregnancy, former preeclampsia rats exhibit significant cardiac hypertrophy 28 days after pregnancy observed in both speckle tracking echocardiography and histological staining. In addition, fibrosis and capillary rarefaction was evident. Pravastatin treatment ameliorated the remodeling and improved cardiac output postpartum. Preeclamptic pregnancy induces irreversible structural changes of cardiac hypertrophy and fibrosis, which can be moderated by pravastatin treatment. This pathological cardiac remodeling might be involved in increased cardiovascular risk in later life.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pravastatina/uso terapêutico , Pré-Eclâmpsia/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Débito Cardíaco/efeitos dos fármacos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Período Pós-Parto , Pravastatina/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Proc Natl Acad Sci U S A ; 116(40): 19983-19988, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527264

RESUMO

Pancreatic ß cells store insulin within secretory granules which undergo exocytosis upon elevation of blood glucose levels. Crinophagy and autophagy are instead responsible to deliver damaged or old granules to acidic lysosomes for intracellular degradation. However, excessive consumption of insulin granules can impair ß cell function and cause diabetes. Atp6ap2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy. Here, we show that Cre recombinase-mediated conditional deletion of Atp6ap2 in mouse ß cells causes a dramatic accumulation of large, multigranular vacuoles in the cytoplasm, with reduction of insulin content and compromised glucose homeostasis. Loss of insulin stores and gigantic vacuoles were also observed in cultured insulinoma INS-1 cells upon CRISPR/Cas9-mediated removal of Atp6ap2. Remarkably, these phenotypic alterations could not be attributed to a deficiency in autophagy or acidification of lysosomes. Together, these data indicate that Atp6ap2 is critical for regulating the stored insulin pool and that a balanced regulation of granule turnover is key to maintaining ß cell function and diabetes prevention.


Assuntos
Deleção de Genes , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Autofagia , Sistemas CRISPR-Cas , Citosol/metabolismo , Feminino , Inativação Gênica , Insulinoma/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Fenótipo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de Estrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
12.
Blood ; 126(4): 504-7, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26063165

RESUMO

The (pro)renin receptor (PRR) was originally thought to be important for regulating blood pressure via the renin-angiotensin system. However, it is now emerging that PRR has instead a generic role in cellular development. Here, we have specifically deleted PRR from T cells. T-cell-specific PRR-knockout mice had a significant decrease in thymic cellularity, corresponding with a 100-fold decrease in the number of CD4(+) and CD8(+) thymocytes, and a large increase in double-negative (DN) precursors. Gene expression analysis on sorted DN3 thymocytes indicated that PRR-deficient thymocytes have perturbations in key cellular pathways essential at the DN3 stage, including transcription and translation. Further characterization of DN T-cell progenitors leads us to propose that PRR deletion affects thymocyte survival and development at multiple stages; from DN3 through to DN4, double-positive, and single-positive CD4 and CD8. Our study thus identifies a new role for PRR in T-cell development.


Assuntos
Diferenciação Celular , Receptores de Superfície Celular/fisiologia , Subpopulações de Linfócitos T/citologia , Timócitos/citologia , Animais , Feminino , Citometria de Fluxo , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA