Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Crit Care Med ; 21(4): 340-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876555

RESUMO

OBJECTIVES: We investigated whether concentrations of circulating microRNAs differ across the hypertensive right ventricle and pulmonary circulation, and correlate with hemodynamic/echocardiographic variables in patients with pulmonary arterial hypertension versus nonpulmonary arterial hypertension controls. DESIGN: Prospective blood collection during cardiac catheterization from the superior vena cava, pulmonary artery, and ascending aorta in 12 children with pulmonary arterial hypertension and nine matched nonpulmonary arterial hypertension controls, followed by an unbiased quantitative polymerase chain reaction array screen for 754 microRNAs in plasma. SETTING: Children's hospital at a medical school. PATIENTS: Twelve pulmonary arterial hypertension patients included as follows: idiopathic pulmonary arterial hypertension (5), pulmonary arterial hypertension (2), pulmonary arterial hypertension-repaired congenital heart disease (4), portopulmonary pulmonary hypertension (1). Nine nonpulmonary arterial hypertension controls included as follows: mild/moderate left ventricular outflow tract obstruction (7), mediastinal teratoma (1), portal vein stenosis (1). INTERVENTIONS: Standard pulmonary arterial hypertension treatment. MEASUREMENTS AND MAIN RESULTS: Analysis of differential concentrations (false discovery rate < 0.05) revealed two trans-right-ventricle microRNA gradients (pulmonary artery vs superior vena cava): miR-193a-5p (step-up in pulmonary arterial hypertension and step-down in control) and miR-423-5p (step-down in pulmonary arterial hypertension and step-up in control) and two transpulmonary microRNA gradients (ascending aorta vs pulmonary artery): miR-26b-5p (step-down only in control) and miR-331-3p (step-up only in pulmonary arterial hypertension). Between-group comparison revealed miR-29a-3p, miR-26a-5p, miR-590-5p, and miR-200c-3p as upregulated in pulmonary arterial hypertension-superior vena cava and miR-99a-5p as downregulated in pulmonary arterial hypertension-pulmonary artery. The differential microRNA-concentrations correlated with prognostic hemodynamic variables (pulmonary vascular resistance, tricuspid annular plane systolic excursion, etc.). CONCLUSIONS: We identified for the first time in human disease (pulmonary arterial hypertension) trans-right-ventricle and transpulmonary microRNA gradients in blood plasma. Several of these microRNAs regulate transcripts that drive cardiac remodeling and pulmonary arterial hypertension and are now emerging as epigenetic pulmonary arterial hypertension biomarkers and targets for therapy.


Assuntos
MicroRNAs , Hipertensão Arterial Pulmonar , Criança , Hipertensão Pulmonar Primária Familiar , Ventrículos do Coração/diagnóstico por imagem , Humanos , MicroRNAs/genética , Estudos Prospectivos , Veia Cava Superior
2.
J Mol Med (Berl) ; 97(10): 1427-1438, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31338525

RESUMO

Alveolar and myocardial hypoxia may be causes or sequelae of pulmonary hypertension (PH) and heart failure. We hypothesized that hypoxia initiates specific epigenetic and transcriptional, pro-inflammatory programs in the right ventricle (RV) and left ventricle (LV). We performed an expression screen of 750 miRNAs by qPCR arrays in the murine RV and LV in normoxia (Nx) and hypoxia (Hx; 10% O2 for 18 h, 48 h, and 5d). Additional validation included single qPCR analysis of miRNA and pro-inflammatory transcripts in murine and human RV/LV, and neonatal rat cardiomyocytes (NRCMs). Differential qPCR-analysis (Hx vs. Nx in RV, Hx vs. Nx in LV, and RV vs. LV in Hx) identified nine hypoxia-regulated miRNAs: let-7e-5p, miR-29c-3p, miR-127-3p, miR-130a-3p, miR-146b-5p, miR-197-3p, miR-214-3p, miR-223-3p, and miR-451. Hypoxia downregulated miR-146b in the RV (p < 0.01) and, less so, in the LV (trend; p = 0.28). In silico alignment showed significant binding affinity of miR-146b-5p sequence with the 3'UTR of TRAF6 known to be upstream of pro-inflammatory NF-kB. Consistently, hypoxia induced TRAF6, IL-6, CCL2(MCP-1) in the mouse RV and LV. Incubating neonatal rat cardiomyocytes with pre-miR-146b led to a downregulation of TRAF6, IL-6, and CCL2(MCP-1). TRAF6 mRNA expression was also increased by 3-fold in the RV and LV of end-stage idiopathic pulmonary arterial hypertension (PAH) patients vs. non-PAH controls. We identified hypoxia-regulated, ventricle-specific miRNA expression profiles in the adult mouse heart in vivo. Hypoxia suppresses miR-146b, thus de-repressing TRAF6, and inducing pro-inflammatory IL-6 and CCL2(MCP-1). This novel hypoxia-induced miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac fibrosis and dysfunction, and may lead to heart failure. KEY MESSAGES: Chouvarine P, Legchenko E, Geldner J, Riehle C, Hansmann G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. • Hypoxia drives ventricle-specific miRNA profiles, regulating cardiac inflammation. • miR-146b-5p downregulates TRAF6, known to act upstream of pro-inflammatory NF-κB. • Hypoxia downregulates miR-146b and induces TRAF6, IL-6, CCL2 (MCP-1) in the murine RV and LV. • The inhibitory regulatory effects of miR-146b are confirmed in primary rat cardiomyocytes (pre-miR, anti-miR) and human explant heart tissue (endstage pulmonary arterial hypertension). • A novel miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac inflammation, fibrosis and ventricular dysfunction.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Inflamação/genética , MicroRNAs/genética , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Miocárdio/patologia , Ratos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
3.
Cell Metab ; 25(5): 1118-1134.e7, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467929

RESUMO

BMP2 and TGFß1 are functional antagonists of pathological remodeling in the arteries, heart, and lung; however, the mechanisms in VSMCs, and their disturbance in pulmonary arterial hypertension (PAH), are unclear. We found a pro-proliferative TGFß1-Stat3-FoxO1 axis in VSMCs, and PPARγ as inhibitory regulator of TGFß1-Stat3-FoxO1 and TGFß1-Smad3/4, by physically interacting with Stat3 and Smad3. TGFß1 induces fibrosis-related genes and miR-130a/301b, suppressing PPARγ. Conversely, PPARγ inhibits TGFß1-induced mitochondrial activation and VSMC proliferation, and regulates two glucose metabolism-related enzymes, platelet isoform of phosphofructokinase (PFKP, a PPARγ target, via miR-331-5p) and protein phosphatase 1 regulatory subunit 3G (PPP1R3G, a Smad3 target). PPARγ knockdown/deletion in VSMCs activates TGFß1 signaling. The PPARγ agonist pioglitazone reverses PAH and inhibits the TGFß1-Stat3-FoxO1 axis in TGFß1-overexpressing mice. We identified PPARγ as a missing link between BMP2 and TGFß1 pathways in VSMCs. PPARγ activation can be beneficial in TGFß1-associated diseases, such as PAH, parenchymal lung diseases, and Marfan's syndrome.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Glucose/metabolismo , Miócitos de Músculo Liso/citologia , PPAR gama/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA