Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171556

RESUMO

Electric vehicles (EVs) are a promising pathway to providing cleaner personal mobility. China provides substantial supports to increase EV market share. This study provides an extensive analysis of the currently unclear environmental and health benefits of these incentives at the provincial level. EVs in China have modest cradle-to-gate CO2 benefits (on average 29%) compared to conventional internal combustion engine vehicles (ICEVs), but have similar carbon emissions relative to hybrid electric vehicles. Well-to-wheel air pollutant emissions assessment shows that emissions associated with ICEVs are mainly from gasoline production, not the tailpipe, suggesting tighter emissions controls on refineries are needed to combat air pollution problems effectively. By integrating a vehicle fleet model into policy scenario analysis, we quantify the policy impacts associated with the passenger vehicles in the major Chinese provinces: broader EV penetration, especially combined with cleaner power generation, could deliver greater air quality and health benefits, but not necessarily significant climate change mitigation. The total value to society of the climate and mortality benefits in 2030 is found to be comparable to a prior estimate of the EV policy's economic costs.

2.
Environ Sci Technol ; 54(24): 16071-16085, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33241682

RESUMO

Light-duty vehicles emit ∼20% of net US greenhouse gases. Deployment of electric vehicles (EVs) can reduce these emissions. The magnitude of the reduction depends significantly on EV charging patterns and hourly power grid variations. Previous US EV studies either do not use hourly grid data, or use data from 2012 or earlier. Since 2012, US grids have undergone major emission-relevant changes, including growth of solar from ∼1 to ∼20% of generation in California, and >30% reduction of coal power countrywide. This study uses hourly grid data from 2018 and 2019 (alongside hourly charging, driving, and temperature data) to estimate EV use emissions in 60 cases spanning the US. The emission impact of charging pattern varies by region. In California and New York, respectively, overnight EV charging produces ∼70% more and ∼20% fewer emissions than daytime charging. We quantify error from two common approximations in EV emission analysis, ignoring hourly variation in grid power and ignoring temperature-driven variation in fuel economy. The combined error exceeds 10% in 30% of cases, and reaches 50% in California, home to half of US EVs. A novel EV emission approximation is introduced, validated (<1% error), and used to estimate EV emissions in future scenarios.


Assuntos
Gases de Efeito Estufa , Emissões de Veículos , Carvão Mineral , Eletricidade , Veículos Automotores , New York , Emissões de Veículos/análise
3.
Sci Rep ; 7(1): 3133, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600525

RESUMO

As we approach a "Full Earth" of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity's FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locally is critical, as significant population growth is expected in less-developed areas of the world. The proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used-a major step for Full Earth preparedness.

4.
Proc Natl Acad Sci U S A ; 112(52): 15821-6, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668380

RESUMO

We introduce a paradigm-"hydricity"-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a "turbine"-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA