Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176906

RESUMO

Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.


Assuntos
Mapeamento Encefálico , Condicionamento Clássico , Humanos , Animais , Camundongos , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Aprendizagem , Imageamento por Ressonância Magnética
2.
Sci Rep ; 14(1): 1368, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228689

RESUMO

Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Inteligência
3.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
4.
Front Psychol ; 14: 1134770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397318

RESUMO

Introduction: There is a large interindividual variability in cognitive functioning with increasing age due to biological and lifestyle factors. One of the most important lifestyle factors is the level of physical fitness (PF). The link between PF and brain activity is widely accepted but the specificity of cognitive functions affected by physical fitness across the adult lifespan is less understood. The present study aims to clarify whether PF is basically related to cognition and general intelligence in healthy adults, and whether higher levels of PF are associated with better performance in the same or different cognitive functions at different ages. Methods: A sample of 490 participants (20-70 years) was analyzed to examine this relationship. Later, the sample was split half into the young to middle-aged group (YM; 20-45 years; n = 254), and the middleaged to older group (MO; 46-70 years; n = 236). PF was measured by a quotient of maximum power in a bicycle ergometry test PWC-130 divided by body weight (W/kg), which was supported by a self-reported level of PF. Cognitive performance was evaluated by standardized neuropsychological test batteries. Results: Regression models showed a relationship between PF and general intelligence (g-factor) and its subcomponents extracted using structural equation modeling (SEM) in the entire sample. This association was moderated by age, which also moderated some specific cognitive domains such as attention, logical reasoning, and interference processing. After splitting the sample into two age groups, a significant relationship was found between cognitive status, as assessed by the Mini Mental State Examination (MMSE), and PF in both age groups. However, apart from cognitive failures in daily life (CFQ), no other association between PF and specific cognitive functions was found in the YM group. In contrast, several positive associations were observed in the MO group, such as with selective attention, verbal memory, working memory, logical reasoning, and interference processing. Discussion: These findings show that middle-aged to older adults benefit more from PF than younger to middle-aged adults. The results are discussed in terms of the neurobiological mechanisms underlying the cognitive effects of PF across the lifespan. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT05155397, identifier NCT05155397.

5.
Hum Brain Mapp ; 44(8): 3359-3376, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013679

RESUMO

Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples. Whereas PGS explain a considerable amount of variance in intelligence, it is largely unknown how brain structure and function mediate this relationship. Here, we show that individuals with higher PGS for educational attainment and intelligence had higher scores on cognitive tests, larger surface area, and more efficient fiber connectivity derived by graph theory. Fiber network efficiency as well as the surface of brain areas partly located in parieto-frontal regions were found to mediate the relationship between PGS and cognitive performance. These findings are a crucial step forward in decoding the neurogenetic underpinnings of intelligence, as they identify specific regional networks that link polygenic predisposition to intelligence.


Assuntos
Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Encéfalo/diagnóstico por imagem , Inteligência/genética , Herança Multifatorial , Escolaridade
6.
Cereb Cortex ; 33(11): 6723-6741, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36682883

RESUMO

Few tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets. Replicable voxels formed 3 clusters, located around the left-hemispheric forceps minor, superior longitudinal fasciculus, and cingulum-cingulate gyrus with extensions into their surrounding areas (anterior thalamic radiation, inferior fronto-occipital fasciculus). Our results suggested that individual differences in general intelligence are robustly associated with white matter FA in specific fiber bundles distributed across the brain, consistent with the Parieto-Frontal Integration Theory of intelligence. Three possible reasons higher FA values might create links with higher g are faster information processing due to greater myelination, more direct information processing due to parallel, homogenous fiber orientation distributions, or more parallel information processing due to greater axon density.


Assuntos
Substância Branca , Adulto , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Inteligência , Anisotropia
7.
Artigo em Inglês | MEDLINE | ID: mdl-36250039

RESUMO

Personality neuroscience is the study of persistent psychological individual differences, typically in the general population, using neuroscientific methods. It has the potential to shed light on the neurobiological mechanisms underlying individual differences and their manifestation in ongoing behavior and experience. The field was inaugurated many decades ago, yet has only really gained momentum in the last two, as suitable technologies have become widely available. Personality neuroscience employs a broad range of methods, including molecular genetics, pharmacological assays or manipulations, electroencephalography, and various neuroimaging modalities, such as magnetic resonance imaging and positron emission tomography. Although exciting progress is being made in this young field, much remains unknown. In this brief review, we discuss discoveries that have been made, methodological challenges and advances, and important questions that remain to be answered. We also discuss best practices for personality neuroscience research and promising future directions for the field.

8.
JMIR Res Protoc ; 11(3): e32352, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35285810

RESUMO

BACKGROUND: Previous research revealed several biological and environmental factors modulating cognitive functioning over a human's lifespan. However, the relationships and interactions between biological factors (eg, genetic polymorphisms, immunological parameters, metabolic products, or infectious diseases) and environmental factors (eg, lifestyle, physical activity, nutrition, and work type or stress at work) as well as their impact on cognitive functions across the lifespan are still poorly understood with respect to their complexity. OBJECTIVE: The goal of the Dortmund Vital Study is to validate previous hypotheses as well as generate and validate new hypotheses about the relationships among aging, working conditions, genetic makeup, stress, metabolic functions, the cardiovascular system, the immune system, and mental performance over the human lifespan with a focus on healthy working adults. The Dortmund Vital Study is a multidisciplinary study involving the Departments of Ergonomics, Immunology, Psychology and Neurosciences, and Toxicology at the Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo) in Germany, as well as several national and international partners. METHODS: The Dortmund Vital Study is designed as a combined cross-sectional and longitudinal study. Approximately 600 healthy subjects aged between 20 and 70 years will participate. A wide range of demographic, psychological, behavioral, sensory, cardiovascular, immunological, and biochemical data, a comprehensive electroencephalography (EEG)-based cognitive test battery as well as structural and functional magnetic resonance imaging (MRI) have been included in the study. RESULTS: The study was approved by the Ethics Committee of IfADo in October 2015. The baseline testing was conducted between 2016 and 2021 and will be repeated every 5 years (3 follow-up measures until 2035). As of March 2020 (until the outbreak of the COVID-19 pandemic), 593 participants have been enrolled. Some results from the cross-sectional part of the study were already published, further results will be published soon. Longitudinal data will be analyzed and published by 2025. CONCLUSIONS: We anticipate that the study will shed light on sources of interindividual differences in the alterations of cognitive functioning with increasing age and reveal biological and lifestyle markers contributing to work ability, longevity, and healthy aging on the one hand, and to risk factors for cognitive decline, mild cognitive impairment, or even dementia on the other hand. TRIAL REGISTRATION: ClinicalTrials.gov NCT05155397; https://clinicaltrials.gov/ct2/show/NCT05155397. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32352.

9.
Hum Brain Mapp ; 43(6): 2051-2063, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35049113

RESUMO

Neuroticism is known to have significant health implications. While previous research revealed that interindividual differences in the amygdala function are associated with interindividual differences in neuroticism, the impact of the amygdala's structure and especially microstructure on variations in neuroticism remains unclear. Here, we present the first study using NODDI to examine the association between the in vivo microstructural architecture of the amygdala and neuroticism at the level of neurites. We, therefore, acquired brain images from 221 healthy participants using advanced multi-shell diffusion-weighted imaging. Because the amygdala comprises several nuclei, we, moreover, used a high-resolution T1 image to automatically segment the amygdala into eight different nuclei. Neuroticism and its facets have been assessed using the NEO-PI-R. Finally, we associated neuroticism and its facets with the volume and microstructure of the amygdala nuclei. Statistical analysis revealed that lower neurite density in the lateral amygdala nucleus (La) was significantly associated with higher scores in depression, one of the six neuroticism facets. The La is the sensory relay of the amygdala, filtering incoming information based on previous experiences. Reduced neurite density and related changes in the dendritic structure of the La could impair its filtering function. This again might cause harmless sensory information to be misevaluated as threatening and lead to the altered amygdala responsivity as reported in previous studies investigating the functional correlates of neuroticism and neuroticism-related disorders like depression.


Assuntos
Tonsila do Cerebelo , Neuritos , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Neuroticismo
10.
Brain Struct Funct ; 227(2): 725-740, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34676455

RESUMO

EEG resting-state alpha asymmetry is one of the most widely investigated forms of functional hemispheric asymmetries in both basic and clinical neuroscience. However, studies yield inconsistent results. One crucial prerequisite to obtain reproducible results is the reliability of the index of interest. There is a body of research suggesting a moderate-to-good reliability of EEG resting-state alpha asymmetry, but unfortunately sample sizes in these studies are typically small. This study presents the first large-scale short-term reliability study of frontal and parietal EEG resting-state alpha asymmetry. We used the Dortmund Vital Study data set containing 370 participants. In each participant, EEG resting state was recorded eight times, twice with their eyes opened, twice with their eyes-closed, each on two different EEG systems. We found good reliability of EEG alpha power and alpha asymmetry on both systems for electrode pairs. We also found that alpha power asymmetry reliability is higher in the eyes-closed condition than in the eyes-open condition. The frontomedial electrode pair showed weaker reliability than the frontolateral and parietal electrode pairs. Interestingly, we found no population-level alpha asymmetry in frontal electrodes, one of the most investigated electrode sites in alpha asymmetry research. In conclusion, our results suggest that while EEG alpha asymmetry is an overall reliable measure, frontal alpha asymmetry should be assessed using multiple electrode pairs.


Assuntos
Eletroencefalografia , Lobo Frontal , Eletrodos , Olho , Humanos , Reprodutibilidade dos Testes
11.
Brain Struct Funct ; 227(2): 515-527, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34235564

RESUMO

Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.


Assuntos
Lateralidade Funcional , Estudo de Associação Genômica Ampla , Encéfalo/diagnóstico por imagem , Lateralidade Funcional/genética , Humanos , Imageamento por Ressonância Magnética
12.
Cells ; 10(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685496

RESUMO

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.


Assuntos
Carcinoma Hepatocelular/patologia , Dieta Ocidental/efeitos adversos , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
Mol Neurobiol ; 58(8): 4145-4156, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33954905

RESUMO

Intelligence is a highly polygenic trait and genome-wide association studies (GWAS) have identified thousands of DNA variants contributing with small effects. Polygenic scores (PGS) can aggregate those effects for trait prediction in independent samples. As large-scale light-phenotyping GWAS operationalized intelligence as performance in rather superficial tests, the question arises which intelligence facets are actually captured. We used deep-phenotyping to investigate the molecular determinants of individual differences in cognitive ability. We, therefore, studied the association between PGS of intelligence (IQ-PGS), cognitive performance (CP-PGS), and educational attainment (EA-PGS) with a wide range of intelligence facets in a sample of 557 healthy adults. IQ-PGS, CP-PGS, and EA-PGS had the highest incremental R2s for general (2.71%; 4.27%; 2.06%), verbal (3.30%; 4.64%; 1.61%), and numerical intelligence (3.06%; 3.24%; 1.26%) and the weakest for non-verbal intelligence (0.89%; 1.47%; 0.70%) and memory (0.80%; 1.06%; 0.67%). These results indicate that PGS derived from light-phenotyping GWAS do not reflect different facets of intelligence equally well, and thus should not be interpreted as genetic indicators of intelligence per se. The findings refine our understanding of how PGS are related to other traits or life outcomes.


Assuntos
Cognição/fisiologia , Estudo de Associação Genômica Ampla/métodos , Inteligência/genética , Testes de Estado Mental e Demência , Herança Multifatorial/genética , Fenótipo , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Clin Neuroradiol ; 31(4): 993-1003, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33787958

RESUMO

PURPOSE: As conventional quantitative magnetic resonance imaging (MRI) parameters are weakly associated with cognitive impairment (CI) in early multiple sclerosis (MS), we explored microstructural white matter alterations in early MS or clinically isolated syndrome (CIS) comparing patients with or without CI. METHODS: Based on a preceding tract-based spatial statistics analysis (3 Tesla MRI) which contrasted 106 patients with early MS or CIS and 49 healthy controls, diffusion metrics (fractional anisotropy, FA, mean diffusivity, MD) were extracted from significant clusters using an atlas-based approach. The FA and MD were compared between patients with (Ci_P n = 14) and without (Cp_P n = 81) cognitive impairment in a subset of patients who underwent CI screening. RESULTS: The FA was reduced in Ci_P compared to Cp_P in the splenium of corpus callosum (p = 0.001), right parahippocampal cingulum (p = 0.002) and fornix cres./stria terminalis (0.042), left posterior corona radiata (p = 0.012), bilateral cerebral peduncles, medial lemniscus and in cerebellar tracts. Increased MD was detected in the splenium of corpus callosum (p = 0.01). The CI-related localizations overlapped only partially with MS lesions. CONCLUSION: Microstructural white matter alterations at disease onset were detectable in Ci_P compared to Cp_P in known cognitively relevant fiber tracts, indicating the relevance of early treatment initiation in MS and CIS.


Assuntos
Esclerose Múltipla , Substância Branca , Anisotropia , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
15.
Cortex ; 137: 18-34, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588130

RESUMO

The visual scene-network-comprising the parahippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area (OPA)-shows a prolonged functional development. Structural development of white matter that underlies the scene-network has not been investigated despite its potential influence on scene-network function. The key factor for white matter maturation is myelination. However, research on myelination using the gold standard method of post-mortem histology is scarce. In vivo alternatives diffusion-weighted imaging (DWI) and myelin water imaging (MWI) so far report broad-scale findings that prohibit inferences concerning the scene-network. Here, we combine MWI, DWI tractography, and fMRI to investigate myelination in scene-network tracts in middle childhood, late childhood, and adulthood. We report increasing myelin from middle childhood to adulthood in right PPA-OPA, and trends towards increases in the left and right RSC-OPA tracts. Investigating tracts to regions highly connected with the scene-network, such as early visual cortex and the hippocampus, did not yield any significant age group differences. Our findings indicate that structural development coincides with functional development in the scene-network, possibly enabling structure-function interactions.


Assuntos
Mapeamento Encefálico , Bainha de Mielina , Adolescente , Adulto , Córtex Cerebral , Criança , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Adulto Jovem
16.
J Affect Disord ; 282: 91-97, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401128

RESUMO

BACKGROUND: Alterations in the hippocampus and prefrontal cortex (PFC) have frequently been reported in depressed patients. These parameters might prove to be a consistent finding in depression. In addition, peripheral DNA methylation of the MORC1 gene promoter showed stable associations with depression across independent samples. However, the question arises whether MORC1, supposedly acting as transcription factor, might also be involved in neurobiological alterations accompanying depression. This study further analyses the role of MORC1 in depression by investigating a potential correlation between peripheral MORC1 DNA methylation and neuronal structural properties previously associated with depression in humans. METHODS: Beck Depression Inventory (BDI) was assessed in 52 healthy participants. DNA was extracted from buccal cells and MORC1 methylation correlated with micro- and macrostructural properties derived from magnetic resonance imaging (MRI) and neurite orientation dispersion and density imaging (NODDI) in the hippocampus and medial prefrontal cortex (mPFC). RESULTS: MORC1 methylation was associated with volume reduction and neurite orientation dispersion and density markers in the hippocampus and mPFC. BDI was positively associated with neurite orientation dispersion and density markers in the hippocampus. LIMITATIONS: The study was conducted in a small sample of healthy participants with subclinical depressive symptoms. Peripheral tissue was analyzed. CONCLUSION: We found significant negative associations between peripheral MORC1 methylation and macro- and microstructural markers in the hippocampus and mPFC. Thus, MORC1 might be involved in neurobiological properties. Studies investigating neuronal methylation patterns of MORC1 are needed to support this hypothesis.


Assuntos
Hipocampo , Mucosa Bucal , Metilação de DNA/genética , Hipocampo/diagnóstico por imagem , Humanos , Proteínas Nucleares/genética , Córtex Pré-Frontal/diagnóstico por imagem , Escalas de Graduação Psiquiátrica
17.
Nat Commun ; 11(1): 4715, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948772

RESUMO

Animal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions. The animals were motivated by water reward and behavior was assessed by logging mandibulations during the fMRI experiment with close to zero motion artifacts over hundreds of repeats. To achieve optimal results, we characterized the species-specific hemodynamic response function. As a proof-of-principle, we run a color discrimination task and discovered differential neural networks for Go-, NoGo-, and response execution-phases. Our findings open the door to visualize the neural fundaments of perceptual and cognitive functions in birds-a vertebrate class of which some clades are cognitively on par with primates.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , Vigília , Animais , Artefatos , Comportamento Animal/fisiologia , Mapeamento Encefálico , Columbidae , Humanos , Inibição Psicológica , Aprendizagem , Movimento (Física) , Redes Neurais de Computação , Recompensa
18.
Cereb Cortex ; 30(4): 2042-2056, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32037442

RESUMO

The corpus callosum serves the functional integration and interaction between the two hemispheres. Many studies investigate callosal microstructure via diffusion tensor imaging (DTI) fractional anisotropy (FA) in geometrically parcellated segments. However, FA is influenced by several different microstructural properties such as myelination and axon density, hindering a neurobiological interpretation. This study explores the relationship between FA and more specific measures of microstructure within the corpus callosum in a sample of 271 healthy participants. DTI tractography was used to assess 11 callosal segments and gain estimates of FA. We quantified axon density and myelination via neurite orientation dispersion and density imaging (NODDI) to assess intra-neurite volume fraction and a multiecho gradient spin-echo sequence estimating myelin water fraction. The results indicate three common factors in the distribution of FA, myelin content and axon density, indicating potentially shared rules of topographical distribution. Moreover, the relationship between measures varied across the corpus callosum, suggesting that FA should not be interpreted uniformly. More specific magnetic resonance imaging-based quantification techniques, such as NODDI and multiecho myelin water imaging, may thus play a key role in future studies of clinical trials and individual differences.


Assuntos
Axônios/metabolismo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/metabolismo , Adolescente , Adulto , Anisotropia , Feminino , Humanos , Masculino , Adulto Jovem
19.
Brain Behav ; 10(1): e01490, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31801182

RESUMO

INTRODUCTION: Our hands are the primary means for motor interaction with the environment, and their neural organization is fundamentally asymmetric: While most individuals can perform easy motor tasks with two hands equally well, only very few individuals can perform complex fine motor tasks with both hands at a similar level of performance. The reason why this phenomenon is so rare is not well understood. Professional drummers represent a unique population to study it, as they have remarkable abilities to perform complex motor tasks with their two limbs independently. METHODS: Here, we used a multimethod neuroimaging approach to investigate the structural, functional, and biochemical correlates of fine motor behavior in professional drummers (n = 20) and nonmusical controls (n = 24). RESULTS: Our results show that drummers have higher microstructural diffusion properties in the corpus callosum than controls. This parameter also predicts drumming performance and GABA levels in the motor cortex. Moreover, drummers show less activation in the motor cortex when performing a finger-tapping task than controls. CONCLUSION: In conclusion, professional drumming is associated with a more efficient neuronal design of cortical motor areas as well as a stronger link between commissural structure and biochemical parameters associated with motor inhibition.


Assuntos
Corpo Caloso/diagnóstico por imagem , Córtex Motor/metabolismo , Desempenho Psicomotor/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Neuroimagem Funcional/métodos , Mãos/fisiologia , Humanos , Masculino , Atividade Motora/fisiologia , Música , Profissionalismo , Análise Espectral/métodos
20.
Psychiatry Res Neuroimaging ; 294: 110991, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31683112

RESUMO

Schizophrenia patients have a higher probability of altered structural and functional differences between the left and right hemisphere. Schizotypy as its nonclinical manifestation has been related to a higher incidence of non-right-handedness and atypical right-hemispheric language dominance. It has been suggested that genes involved in cilia function might link brain asymmetry and neurodevelopmental disorders. We assessed DNA methylation in the promoter regions of seven candidate genes involved in cilia function and psychiatric disorders from buccal cells and investigated their association with schizotypy and language lateralization in 60 healthy adults. Moreover, we determined microstructural properties of the planum temporale in a subsample of 52 subjects using neurite orientation dispersion and density imaging (NODDI). We found a significant association between schizotypy and DNA methylation in the AHI1 promoter region. Moreover, AHI1 DNA methylation significantly predicted language lateralization and asymmetry in estimated planum temporale neurite density. Finally, stronger leftward asymmetry in estimated neurite density was associated with a more pronounced right ear advantage (left hemisphere dominance) in the forced-right condition of the dichotic listening task, measuring attentional modulation of language lateralization. Our results are in line with a shared molecular basis of schizotypy and functional hemispheric asymmetries that is based on cilia function.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Encéfalo/fisiopatologia , Cílios/genética , Transtorno da Personalidade Esquizotípica/genética , Transtorno da Personalidade Esquizotípica/fisiopatologia , Atenção , Percepção Auditiva , Mapeamento Encefálico , Metilação de DNA , Lateralidade Funcional , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Mucosa Bucal , Esquizofrenia/fisiopatologia , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA