Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 64(24): 18102-18113, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34855405

RESUMO

This paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound 2 showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites in vitro. In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability. Due to the increased polarity at C2, the permeability for these compounds decreased. Further adjustment of the polarity by replacing the N1 2,6-dimethoxyphenyl group with a 2,6-diethylphenyl group and reoptimization for the potency of the C5 pyrroloamides resulted in potent compounds with improved permeability. Compound 21 displayed excellent pharmacokinetic profiles in rat, monkey, and dog models and robust pharmacodynamic efficacy in the rodent heart failure model. Compound 21 also showed an acceptable safety profile in preclinical toxicology studies and was selected as a backup development candidate for the program.


Assuntos
Receptores de Apelina/agonistas , Insuficiência Cardíaca/tratamento farmacológico , Pirimidinonas/farmacologia , Animais , Cães , Descoberta de Drogas , Humanos , Pirimidinonas/química , Pirimidinonas/farmacocinética , Pirimidinonas/uso terapêutico , Ratos , Relação Estrutura-Atividade
2.
ACS Med Chem Lett ; 12(11): 1766-1772, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795866

RESUMO

The apelin receptor (APJ) is a significant regulator of cardiovascular function and is involved in heart failure and other cardiovascular diseases. (Pyr1)apelin-13 is one of the endogenous agonists of the APJ receptor. Administration of (Pyr1)apelin-13 increases cardiac output in preclinical models and humans. Recently we disclosed clinical lead BMS-986224 (1), a C3 oxadiazole pyridinone APJ receptor agonist with robust pharmacodynamic effects similar to (Pyr1)apelin-13 in an acute rat pressure-volume loop model. Herein we describe the structure-activity relationship of the carboxamides as oxadiazole bioisosteres at C3 of the pyridinone core and C5 of the respective pyrimidinone core. This study led to the identification of structurally differentiated 6-hydroxypyrimidin-4(1H)-one-3-carboxamide 14a with pharmacodynamic effects comparable to those of compound 1.

3.
Drug Metab Dispos ; 41(2): 518-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223498

RESUMO

DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 µM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 µM; V(max1), 12 pmol/min/mg; K(m2), 27 µM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 µM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Modelos Biológicos , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Animais , Biotransformação , Células Cultivadas , Remoção de Radical Alquila , Feminino , Hepatócitos/enzimologia , Humanos , Hidroxilação , Isoenzimas , Cinética , Masculino , Metilação , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Oxirredução , Pró-Fármacos/química , Ratos , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Tripanossomicidas/química
4.
Drug Metab Dispos ; 40(1): 6-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21953913

RESUMO

Dose selection during antiparasitic drug development in animal models and humans traditionally has relied on correlations between plasma concentrations obtained at or below maximally tolerated doses that are efficacious. The objective of this study was to improve the understanding of the relationship between dose and plasma/tissue exposure of the model antiparasitic agent, pafuramidine, using a semiphysiologically based pharmacokinetic (semi-PBPK) modeling approach. Preclinical and clinical data generated during the development of pafuramidine, a prodrug of the active metabolite, furamidine, were used. A whole-body semi-PBPK model for rats was developed based on a whole-liver PBPK model using rat isolated perfused liver data. A whole-body semi-PBPK model for humans was developed on the basis of the whole-body rat model. Scaling factors were calculated using metabolic and transport clearance data generated from rat and human sandwich-cultured hepatocytes. Both whole-body models described pafuramidine and furamidine disposition in plasma and predicted furamidine tissue (liver and kidney) exposure and excretion profiles (biliary and renal). The whole-body models predicted that the intestine contributes significantly (30-40%) to presystemic furamidine formation in both rats and humans. The predicted terminal elimination half-life of furamidine in plasma was 3- to 4-fold longer than that of pafuramidine in rats (170 versus 47 h) and humans (64 versus 19 h). The dose-plasma/tissue exposure relationship for the prodrug/active metabolite pair was determined using the whole-body models. The human model proposed a dose regimen of pafuramidine (40 mg once daily) based on a predefined efficacy-safety index. A similar approach could be used to guide dose-ranging studies in humans for next-in-class compounds.


Assuntos
Antiparasitários/farmacologia , Antiparasitários/farmacocinética , Modelos Biológicos , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
5.
Curr Opin Investig Drugs ; 11(8): 876-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20721830

RESUMO

Aromatic diamidines are potent trypanocides. Pentamidine, a diamidine, has been used for more than 60 years to treat human African trypanosomiasis (HAT); however, the drug must be administered parenterally and is active against first-stage HAT only, prior to the parasites causing neurological deterioration through invasion of the CNS. A major research effort to design novel diamidines has led to the development of orally active prodrugs and, remarkably, a new generation of compounds that can penetrate the CNS. In this review, progress in the development of diamidines for the treatment of HAT is discussed.


Assuntos
Benzamidinas/farmacologia , Benzamidinas/uso terapêutico , Pentamidina/uso terapêutico , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Animais , Benzamidinas/administração & dosagem , Benzamidinas/farmacocinética , Biotransformação , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Desenho de Fármacos , Resistência a Medicamentos , Humanos , Pentamidina/administração & dosagem , Pentamidina/farmacocinética , Pentamidina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacocinética , Tripanossomicidas/farmacologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/parasitologia
6.
J Clin Lab Anal ; 24(3): 187-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20486201

RESUMO

Human African trypanosomiasis (HAT), also called African sleeping sickness, is a neglected tropical parasitic disease indigenous to sub-Saharan Africa. Diamidine compounds, including pentamidine and CPD-0801, are potent anti-trypanosomal molecules. The latter is a potential drug in the development at the UNC based Consortium for Parasitic Drug Development. An orally bioavailable prodrug of CPD-0801, DB868, is metabolized primarily in the liver to the active form. A monoclonal antibody developed against a pentamidine derivative has shown significant reactivity with CPD-0801 (EC(50) 65.1 nM), but not with the prodrug (EC(50)>18,000 nM). An inhibitory enzyme-linked immunosorbent assay (IELISA) has been used to quantitatively monitor prodrug metabolism by detecting the production of the active compound over time in a sandwich culture rat hepatocyte system and in rats. These results were compared with the results of the standard LC/MS/MS assay. Spearman coefficients of 0.96 and 0.933 (in vitro and in vivo, respectively) indicate a high correlation between these two measurement methods. This novel IELISA provides a facile, inexpensive, and accurate method for drug detection that may aide in elucidating the mechanisms of action and toxicity of existing and future diamidine compounds.


Assuntos
Anticorpos Monoclonais/imunologia , Pró-Fármacos/metabolismo , Tripanossomicidas/análise , Tripanossomicidas/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Especificidade de Anticorpos/imunologia , Benzamidinas/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pentamidina/análogos & derivados , Pentamidina/imunologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Espectrometria de Massas em Tandem , Tripanossomicidas/sangue , Tripanossomicidas/imunologia , Tripanossomíase Africana/tratamento farmacológico
7.
Drug Metab Dispos ; 35(3): 345-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17194717

RESUMO

Piperacillin metabolism and biliary excretion are different between humans and preclinical species. In the present study, piperacillin metabolites were characterized in bile and urine of healthy humans and compared with metabolites formed in vitro. Volunteers were administered 2 g of piperacillin IV; blood, urine, and duodenal aspirates (obtained via a custom-made oroenteric catheter) were collected. The metabolism of piperacillin in humans also was investigated in vitro using pooled human liver microsomes and sandwich-cultured human hepatocytes. Piperacillin and metabolites were estimated by high-performance liquid chromatography with tandem mass spectrometry detection. Piperacillin, desethylpiperacillin, and desethylpiperacillin glucuronide were detected in bile, urine, and human liver microsomal incubates. Similar to the in vivo results, desethylpiperacillin was formed and excreted into bile canaliculi of sandwich-cultured human hepatocytes. This is the first report of glucuronidation of desethylpiperacillin in vitro or in vivo. The clinical method employed in this study to determine biliary clearance of drugs also facilitates bile collection as soon as bile is excreted from the gallbladder, thereby minimizing the exposure of labile metabolites to the intestinal environment. This study exemplifies how a combination of in vitro and in vivo tools can aid in the identification of metabolites unique to the human species.


Assuntos
Piperacilina/farmacocinética , Antibacterianos/farmacocinética , Antibacterianos/urina , Bile/química , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Piperacilina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA