Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 232: 107440, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36881983

RESUMO

BACKGROUND AND OBJECTIVES: Compressed sensing (CS) is often used to accelerate magnetic resonance image (MRI) reconstruction from undersampled k-space data. A novelty deeply unfolded networks (DUNs) based method, designed by unfolding a traditional CS-MRI optimization algorithm into deep networks, can provide significantly faster reconstruction speeds than traditional CS-MRI methods while improving image quality. METHODS: In this paper, we propose a High-Throughput Fast Iterative Shrinkage Thresholding Network (HFIST-Net) for reconstructing MR images from sparse measurements by combining traditional model-based CS techniques and data-driven deep learning methods. Specifically, the conventional Fast Iterative Shrinkage Thresholding Algorithm (FISTA) method is expanded as a deep network. To break the bottleneck of information transmission, a multi-channel fusion mechanism is proposed to improve the efficiency of information transmission between adjacent network stages. Moreover, a simple yet efficient channel attention block, called Gaussian context transformer (GCT), is proposed to improve the characterization capabilities of deep Convolutional Neural Network (CNN,) which utilizes Gaussian functions that satisfy preset relationships to achieve context feature excitation. RESULTS: T1 and T2 brain MR images from the FastMRI dataset are used to validate the performance of the proposed HFIST-Net. The qualitative and quantitative results showed that our method is superior to those compared state-of-the-art unfolded deep learning networks. CONCLUSIONS: The proposed HFIST-Net is capable of reconstructing more accurate MR image details from highly undersampled k-space data while maintaining fast computational speed.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA