Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Food Res Int ; 195: 114980, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277243

RESUMO

The thermal sterilization process of protein beverages inevitably leads to the formation of insoluble thermal aggregates, greatly reducing the texture and taste of protein beverages. In this study, homogenized egg white (HEW) was obtained by ultrahigh-high-pressure (UHP) homogenization pretreatment of egg white (EW), and then a special egg white fluid gel (EWFG) was prepared by water bath heating. The results showed that the optimal conditions for preparing EWFG were three cycles at 20 MPa homogenizing pressure and heating in a water bath at 72℃ for 10 min. Under these conditions, the EWFG was a milky-white homogeneous liquid with an average particle size of about 560 nm. Measurements of the physicochemical properties of HEW and EWFG showed that the UHP homogenization treatment reduced the viscosity of HEW, decreased the particle size of protein aggregates, and increased the zeta potential, which altered the interactions of proteins during the subsequent heating process and facilitated the formation of homogeneous and dispersed EWFG. EWFG showed good stability at pH 6-10 and in low-concentration saline and medium-concentration sucrose solutions. The EWFG obtained by the present treatment is more suitable for factory-scale production and has great potential for protein beverage applications.


Assuntos
Clara de Ovo , Manipulação de Alimentos , Géis , Temperatura Alta , Tamanho da Partícula , Pressão , Géis/química , Manipulação de Alimentos/métodos , Clara de Ovo/química , Viscosidade , Concentração de Íons de Hidrogênio , Calefação , Proteínas do Ovo/química
2.
Ultrason Sonochem ; 110: 107060, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39255593

RESUMO

Low-temperature cooking causes flavor weakness while improving the texture and digestive properties of meat. To enhance the flavor of low-temperature cooked Tibetan pork, samples were cooked at low-temperature with or without ultrasound-assisted (UBTP, BTP) for different times (30 min, 90 min) and then analyzed using GC-MS and LC-MS. The results showed that ultrasound-assisted cooking caused a significant increase in lipid oxidation by 9.10% in the early stage of the treatment. Additionally, at the later stage of ultrasound-assisted processing, proteins were oxidized and degraded, which resulted in a remarkable rise in the protein carbonyl content by 6.84%. With prolonged effects of ultrasound and low-temperature cooking, the formation of phenylacetaldehyde in UBTP-90 sample originated from the degradation of phenylalanine through multivariate statistics and correlation analysis. Meanwhile, trans, cis-2,6-nonadienal and 1-octen-3-one originated from the degradation of linolenic acid and arachidonic acid. This study clarified the mechanism of ultrasound-assisted treatment improving the flavor of low-temperature-cooked Tibetan pork based on the perspective of lipids and proteins oxidation, providing theoretical supports for flavor enhancement in Tibetan pork-related products.


Assuntos
Culinária , Oxirredução , Ondas Ultrassônicas , Suínos , Animais , Temperatura Baixa , Lipídeos/química , Proteínas/química , Volatilização
3.
Poult Sci ; 103(12): 104253, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39278115

RESUMO

Chicken egg yolk plasma (EYP), the supernatant fraction of egg yolk obtained by water dilution and centrifugation, is a rich source of various bioactive substances and a significant bearer of yolk-emulsifying properties. This study utilized proteomics to conduct a comprehensive and in-depth analysis of both common and modified EYP proteins (phosphorylated proteins and N-glycosylated proteins). Total of 208 proteins were identified in EYP, including 42 phosphorylated proteins with 137 phosphorylation sites and 150 N-glycoproteins with 332 N-glycosylation sites. Among the phosphorylation sites, tyrosine accounted for 80.6%, while the N-glycosylation sites predominantly featured "N-X-T" motifs, accounting for 58.7%. Functional enrichment analysis revealed that most proteins were involved in regulating enzyme activity and inhibition with a particular focus on modulating peptidase activity. Notably, vitellogenins-2 (30 phosphorylation sites, 9 N-glycosylation sites) and apolipoprotein B (10 phosphorylation sites, 56 N-glycosylation sites) were the 2 proteins with the most modification sites. Additionally, EYP was found to contain the highly N-glycosylated complement proteins C3 and C4. These findings provide new insights into the protein composition of EYP and its roles in chicken embryo development and immune defense, offering a theoretical foundation for the application of EYP in various fields.

4.
Small ; : e2405092, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324256

RESUMO

In acute lung injury, destruction of the lung endothelial glycocalyx leads to vessel permeabilization and contributes to pulmonary edema and inflammation. Heparan sulfate, which accounts for >70% of glycosaminoglycans in the endothelial glycocalyx, plays a crucial physiological anti-inflammatory role. To treat acute lung injury, it is explored whether a two-step in vivo bioorthogonal chemistry strategy can covalently link intravenously administered heparan sulfate to the lung vascular endothelium and the damaged glycocalyx. First, fusogenic liposomes (EBP-Tz-FLs) carrying the reactive group tetrazine (Tz), and an E-selectin-binding peptide (EBP) to target the lung inflammatory endothelium are administered intravenously. This step aimed to anchor the tetrazine group to the membrane of inflammatory endothelial cells. Second, heparan sulfate (HS-TCO) conjugated to the trans-cyclooctene (TCO) group, which spontaneously reacts with Tz, is injected intravenously, leading to covalent heparan sulfate addition to the vascular endothelium. In a mouse model of acute lung injury, this approach substantially reduced vascular permeability and attenuated lung tissue infiltration. The EBP-Tz-FLs and HS-TCO showed favorable biocompatibility and safety both in vitro and in vivo. The proposed strategy shows good promise in acute lung injury therapy and covalently anchoring functional molecules onto the membrane of target cells.

5.
Int J Biol Macromol ; : 135706, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39349334

RESUMO

The volatile characteristics of lemongrass essential oil (LO) have seriously hindered its further application, and encapsulation it with multilayer modified liposomes may be an effective strategy to improve this dilemma. This study selected chitosan (CH) and three anionic polymers, pectin (P) / gum arabic (GA) / carrageenan (C), as the first and second coating polymers to modify nano liposomes (NL) by layer-by-layer electrostatic deposition, obtaining three bilayer liposomes, P-CH-NL, GA-CH-NL, and C-CH-NL as high-quality stabilized carriers of LO. The bilayer liposomes showed a dense membrane structure ranging from 110 to 150 nm uniformly, with good antioxidant properties. All bilayer liposomes had good stability during 28-day storage at 4 °C, while C-CH-NL performed relatively better inferred by smaller changes of size, PDI and Zeta potential. The total volatile base nitrogen (TVB-N) values of fresh chicken meat and a total number of bacterial colonies (TBC) experiments showed that GA-CH-NL and C-CH-NL could better retard the increase of volatile salt base nitrogen. All bilayer liposomes could delay the time for the total bacterial count to exceed 6 log CFU/g (from 7 days to 10 / 12 days). Therefore, the bilayer liposomes P-CH-NL, GA-CH-NL, and C-CH-NL may be promising natural preservatives for food products.

6.
Food Chem X ; 23: 101710, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39206450

RESUMO

Gelatin is a protein molecule that can be hydrolyzed from collagen, animal bones, skin and it easily soluble in water. Source animals for gelatin ingredients must be evaluated, as well as their halal status. The omics method towards gelatin authentication in food and pharmaceutical products has several advantages, including high sensitivity and reliable data. Omics investigation employs the process of breaking down substances into small particles, hence enhancing the ability to detect a greater number of compounds. Omics study has the capability to identify substances at the subclass level, which makes it highly suitable for gelatin authentication. Gelatin lipids, metabolites, proteins, and volatile chemicals can be utilized as references to authenticate gelatin. In adopting gelatin authentication, lipidomics, metabolomics, proteomics, and volatilomics must be combined with chemometrics for data interpretation. Chemometrics can convert omics analysis data into easily viewable data. Chemometric approaches capable of presenting omics analysis data for gelatin authentication include PCA, HCA, PLS-DA, PLSR, SIMCA, and FACS. Visually chemometrically explain the differences in gelatin from different animal sources. The combination of omics analysis and chemometrics is a very promising technology for gelatin authentication in food and pharmaceutical products.

7.
Ultrason Sonochem ; 110: 107029, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39163693

RESUMO

The challenge of meat quality degradation due to transportation difficulties in high-altitude plateaus underscores the importance of an efficient thawing process for Tibetan pork to ensure its quality. This study compared four thawing methods ultrasound thawing (UT), refrigerator thawing (RT), hydrostatic thawing (HT), and microwave thawing (MT) to assess their impact on the quality of Tibetan pork, focusing on thawing loss, tenderness, color variation, and alterations in protein secondary structure and moisture content. Additionally, the study examined the impact of thawing on the metabolites of Tibetan pork using metabolomics techniques. The results indicated that UT yielded the highest quality samples. UT significantly accelerated the thawing rate and had minimal impact on tenderness compared to traditional thawing methods. Moreover, protein and lipid oxidation levels were reduced by UT treatment. Furthermore, it enhanced the binding capacity of protein and water molecules, reduced drip loss, and maintained meat color stability. What's more, amino acid metabolites such as l-glutamic acid, l-proline, oxidized glutathione, and 1-methylhistidine played a significant role in thawing oxidation in Tibetan pork, exhibiting a positive correlation with protein oxidation. UT resulted in a notable decrease in the levels of hypoxanthine and 2-aminomethylpyrimidine, contributing to the reduction of bitterness in the thawed meat and consequently enhancing the freshness of Tibetan pork. This study offers novel insights into understanding the biological changes occurring during the thawing process, while also furnishing a theoretical framework and technical assistance to improve the quality of Tibetan pork and propel advancements in food processing technology.


Assuntos
Oxirredução , Animais , Suínos , Ondas Ultrassônicas , Qualidade dos Alimentos , Tibet , Congelamento , Manipulação de Alimentos/métodos , Carne/análise
8.
BMC Ecol Evol ; 24(1): 75, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844857

RESUMO

BACKGROUND: The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS: In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS: Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.


Assuntos
Aquilegia , Fluxo Gênico , Aquilegia/genética , Genômica , China , Filogenia , Hibridização Genética
9.
Food Res Int ; 190: 114629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945621

RESUMO

This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to ß-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.


Assuntos
Álcalis , Antioxidantes , Digestão , Linho , Peptídeos , Proteínas de Plantas , Linho/química , Peptídeos/metabolismo , Peptídeos/química , Antioxidantes/química , Antioxidantes/análise , Proteínas de Plantas/metabolismo , Álcalis/química , Concentração de Íons de Hidrogênio , Hidrólise , Sementes/química , Manipulação de Alimentos/métodos , Ondas Ultrassônicas
10.
Poult Sci ; 103(8): 103878, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820881

RESUMO

Ultrasound-induced egg white fluidic gels (UEFG) were prepared through ultrasonic pretreatment followed by subsequent heating. The optimal preparation parameters for UEFG were: ultrasonic power density between 0.2 to 0.8 W/mL, ultrasonic treatment time surpassing 150 s, heating temperature within 70 to 76°C, and heating time under 16 min. The prepared UEFG is a milky white solution with a viscosity lower than that of fresh egg white, and displayed a particle size distribution primarily between 100 and 1,200 nm. Stability assessments conducted over 28 d at 4°C revealed that UEFG remained stable at pH 6-10, with exceptional stability from pH 8 to 10, while it is less stable in highly acidic (pH 2-4) or basic environments (pH 12). The UEFG also showed commendable stability in the presence of salt and sucrose solutions. We report a simple and novel method for preparing UEFG with good flowability after heating treatment. The UEFG has broad applications in the food industry, such as precooked egg white powder, high protein beverages, composite dairy products, etc.


Assuntos
Clara de Ovo , Géis , Clara de Ovo/química , Géis/química , Manipulação de Alimentos/métodos , Manipulação de Alimentos/instrumentação , Animais , Temperatura Alta , Galinhas , Ultrassom , Viscosidade
11.
Poult Sci ; 103(6): 103697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608389

RESUMO

To improve the thermal gel properties of egg yolk, the effect of several valence metal ions (K+, Ca2+, Mg2+ and Fe3+) with different concentrations (0-0.72%) on the rheological, gel, and structural properties of egg yolk were investigated. Results showed that monovalent and divalent ions were beneficial to the formation of uniform and dense gel network, especially with the addition of 0.72% magnesium ion, which further improved gel hardness, water holding capacity (WHC) and viscoelastic properties, the properties of egg yolk gel increased with the increase of the concentration of mono-bivalent metal ions. Adding ferric ion remarkably increased the average particle size (d4,3) and apparent viscosity of egg yolk, destroying the disulfide bonds and the hydrophobic interactions in gel. Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectra analysis revealed that metal ions promoted the hydrophobic aggregation among egg yolk proteins and induced the transition of protein secondary structure from ordered to disordered. This work will provide a theoretical reference for the development of low salt and nutrient fortified egg yolk products.


Assuntos
Galinhas , Gema de Ovo , Gema de Ovo/química , Animais , Géis/química , Cátions Bivalentes , Reologia , Viscosidade
12.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542215

RESUMO

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Assuntos
Camellia sinensis , Humanos , Íntrons/genética , Camellia sinensis/genética , Marcadores Genéticos , Genoma de Planta , Melhoramento Vegetal , Chá
13.
World J Gastrointest Oncol ; 16(2): 563-570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425401

RESUMO

BACKGROUND: Early adenocarcinoma mixed with a neuroendocrine carcinoma (NEC) component arising in the gastroesophageal junctional (GEJ) region is rare and even rarer in young patients. Here, we report such a case in a 29-year-old Chinese man. CASE SUMMARY: This patient presented to our hospital with a 3-mo history of dysphagia and regurgitation. Upper endoscopy revealed an elevated nodule in the distal esophagus 1.6 cm above the GEJ line, without Barrett's esophagus or involvement of the gastric cardia. The nodule was completely resected by endoscopic submucosal dissection (ESD). Pathological examination confirmed diagnosis of intramucosal adenocarcinoma mixed with an NEC component, measuring 1.5 cm. Immunohistochemically, both adenocarcinoma and NEC components were positive for P53 with a Ki67 index of 90%; NEC was positive for synaptophysin and chromogranin. Next-generation sequencing of 196 genes demonstrated a novel germline mutation of the ERCC3 gene in the DNA repair pathway and a germline mutation of the RNF43 gene, a common gastric cancer driver gene, in addition to pathogenic somatic mutations in P53 and CHEK2 genes. The patient was alive without evidence of the disease 36 mo after ESD. CONCLUSION: Early adenocarcinoma with an NEC component arising in the distal esophageal side of the GEJ region showed evidence of gastric origin.

14.
Poult Sci ; 103(5): 103659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537401

RESUMO

Micro-organisms on the eggshell surface of affect the quality of the egg. Sometimes, these microbes even pose a serious threat to the health of the egg's consumer. Bacterial 16S rDNA and fungal internal transcribed spacer region were sequenced to analyze the microbial diversity on the shell surface of the eggs collected from 4 distinct regions of China: Guyuan (GY; 1.5 million hens), Langfang (LF; 0.1 million hens), Beihai (BH; 1.2 million hens), and Dongguan (DG; 0.2 million hens). The results showed a higher bacterial and fungal abundance on the eggs collected from the northern and southern China farms, respectively. The dominant bacterial phylum detected across all egg samples was Firmicutes. In addition, the shell surfaces of the DG and LF samples harbored abundant levels of Proteobacteria. The dominant fungal phyla detected across all egg samples were Ascomycota and Basidiomycota. The bacterial compositions on eggshell surfaces differed significantly across all geographic regions, and the fungal composition differed significantly between samples collected from the southern and northern farms (P < 0.05). The abundance and composition of microbial colonies on the eggshell surface varied based on their geographical location (climate and environment) and farming scale (management). Our findings provide an important reference for optimizing the cleaning and disinfection methods for fresh eggs collected from different sources.


Assuntos
Bactérias , Galinhas , Casca de Ovo , Animais , China , Galinhas/microbiologia , Casca de Ovo/microbiologia , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Fungos/isolamento & purificação , Fungos/classificação , Fungos/genética , Criação de Animais Domésticos/métodos , Microbiota , DNA Fúngico/análise , DNA Fúngico/genética
15.
Poult Sci ; 103(5): 103629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518664

RESUMO

Chicken egg chalaza (CLZ) is a natural colloidal structure in eggs that exists as an egg yolk stabilizer and is similar in composition to egg white. In this study, the proteome, phosphoproteome, and N-glycoproteome of CLZ were characterized in depth. We hydrolyzed the CLZ proteins and enriched the phosphopeptides and glycopeptides. We identified 45 phosphoproteins and 80 N-glycoproteins, containing 59 phosphosites and 203 N-glycosylation sites, respectively. Typically, the ovalbumin in CLZ was both phosphorylated and N-glycosylated, with 4 phosphosites and 4 N-glycosylation sites. Moreover, we identified 2 N-glycosylated subunits of ovomucin, mucin-5B and mucin-6, with 32 and nine N- glycosylation sites, respectively. Analysis of the phosphorylation and N-glycosylation status of CLZ proteins could provide novel insights into the structural and functional characteristics of CLZ.


Assuntos
Galinhas , Proteínas do Ovo , Animais , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Proteômica , Proteoma , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Óvulo/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo
16.
Int J Biol Macromol ; 262(Pt 1): 129973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325697

RESUMO

The formation of the egg white precipitate (EWP) during dilution poses challenges in food processing. In this paper, the effects of 90 W and 360 W ultrasonic intensities on the inhibition of EWP formation were investigated. The findings revealed that 360 W sonication effectively disrupted protein aggregates, decreasing the dry matter of EWP by 5.24 %, particle size by 57.86 %, and viscosity by 82.28 %. Furthermore, the ultrasonic pretreatment unfolded protein structures and increased the content of ß-sheet structures. Combined with quantitative proteomics and intermolecular forces analysis, the mechanism by which ultrasonic pretreatment inhibited water-diluted EWP formation by altering protein interactions was proposed: ultrasonic pretreatment disrupted electrostatic interactions centered on lysozyme, as well as hydrogen-bonding interactions between ovomucin and water. In conclusion, our research provides valuable insights into the application of ultrasonic pretreatment as a means to control and improve the quality of egg white-based products.


Assuntos
Proteínas do Ovo , Clara de Ovo , Proteínas do Ovo/química , Clara de Ovo/química , Água , Ultrassom , Proteômica
17.
Int J Biol Macromol ; 261(Pt 1): 129772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281539

RESUMO

The synergistic effect of graphene sheets and titanium dioxide nanoparticles (TiO2) hybrid fillers can improve the antibacterial, mechanical, and barrier properties of gelatin (GL), making it more suitable to be used in the food packaging application. However, the uneven dispersion and aggregation of the hybrid fillers restrict its performance for further application. In order to achieve the above superior properties, reduced graphene oxide aerogel microspheres (rGOAMs) loaded with TiO2 (rGOAMs@TiO2) were successfully prepared using one-step hydrothermal process by reducing titanium sulfate into TiO2 on the framework of rGOAMs, followed by effective dispersion in the GL matrix to form nanocomposites (rGOAMs@TiO2/GL) through simultaneous ultrasonication and mechanical stirring, as well as an ultrasonic cell grinder process. Incorporating a mere 0.8 wt% of rGOAMs@TiO2 effectively improved the mechanical, antibacterial, UV light barrier, thermal stability, hydrophobicity, and water vapor barrier properties of the GL. Compared with the composites made of rGOAMs, TiO2, and GL (rGOAMs/TiO2/GL), rGOAMs@TiO2/GL composites showed stronger filler-matrix interactions, better filler dispersion, and lower TiO2 particle aggregation, suggesting superiority compared to rGOAMs/TiO2/GL composites at the same filler content. This innovative method of mixing GL with rGOAMs@TiO2 holds great promise for enhancing the suitability of GL in active food packaging applications.


Assuntos
Embalagem de Alimentos , Grafite , Gelatina , Microesferas , Titânio , Antibacterianos/farmacologia
18.
Int J Biol Macromol ; 254(Pt 3): 128084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967608

RESUMO

Chicken egg whites (whole egg white, EW; thick egg white, TKEW; thin egg white, TNEW) become turbid and are accompanied by the formation of precipitates after being diluted with an equal mass of deionized water. The precipitates of TKEW induced by water dilution (Thick Egg White Precipitates, TKEWP) account for 14.47 % of TKEW total dry matter, much higher than that of thin egg white precipitates (TNEWP) (1.51 %) and whole egg white precipitates (EWP) (5.53 %). Quantitative proteomic analysis identified 27 differentially abundant proteins (p < 0.05) among EW, EWP, TNEWP, and TKEWP. Lysozyme was found to be a key protein in the formation of EW precipitates induced by water dilution, as its abundance was significantly higher in TNEWP and TKEWP. Mucin-5B (α-ovomucin) had the highest abundance in TKEWP, suggesting that its insolubility is one of the important factors contributing to the large formation of TKEWP. This paper systematically studies the formation, characteristics, and composition of egg white precipitation caused by water dilution, and puts forward a new understanding of the processing characteristics of egg white liquid, thus laying a theoretical foundation for further research methods to reduce egg white precipitation by water dilution.


Assuntos
Galinhas , Clara de Ovo , Animais , Proteômica , Ovomucina , Alérgenos
19.
J Drug Target ; 32(1): 80-92, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38044844

RESUMO

Efficient brain drug delivery has been a challenge in the treatment of Alzheimer's Disease and other brain disorders as blood-brain barrier (BBB) impedes most drugs to reach brain. To overcome this obstacle, we developed a novel TGN decorated erythrocyte membrane-coated poly (lactic-co-glycolic acid) nanoparticle (TRNNs). The nanoparticle significantly boosted the penetration (7.3 times) in a U-118MG and HCMEC/D3 cell co-culture BBB model in vitro. Living image was performed to assess the TRNNs distribution in vivo. The fluorescence intensity in the isolated brain of TRDNs-treated mice was about 8 times that of the DNs-treated. In the novel object recognition test, the mice after administration of TRDNs showed higher recognition index (0.414 ± 0.016) than the model group (0.275 ± 0.019). A significant increase in the number of dendritic spines from TRNNs administrated mice hippocampi neurons was observed after Golgi stain. This improvement of neurons was also confirmed by the significant high expression of PSD95 protein level in hippocampi. We measured the OD values of Aß25-35 induced PC12 cells that pre-treatment with different nanoparticles and concluded that TRNNs had a robust neuroprotection effect. Above all, functional biomimetic nanoparticles could increase the accumulation of naringenin into brain, thereby enable the drug to exert greater therapeutic effects.


Assuntos
Doença de Alzheimer , Flavanonas , Nanopartículas , Ratos , Camundongos , Animais , Sistemas de Liberação de Fármacos por Nanopartículas , Biomimética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Nanopartículas/metabolismo
20.
Food Res Int ; 175: 113673, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129022

RESUMO

Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.


Assuntos
Linho , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Diálise Renal , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA