Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38530752

RESUMO

A Gram-stain-positive bacterium, designated YN-L-19T, was isolated from a sludge sample collected from a pesticide-manufacturing plant. Cells of YN-L-19T were strictly aerobic, non-spore-forming, non-motile and ovoid-shaped. Colonies were small, smooth and yellow. Growth occurred at 10-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, 7.0) and 0-3.0 % (w/v) NaCl (optimum 0.5 %). Phylogenetic analysis based on genome and 16S rRNA gene sequences indicated that YN-L-19T was affiliated to the family Microbacteriaceae and most closely related to Diaminobutyricimonas aenilata, Terrimesophilobacter mesophilus, Planctomonas deserti and Curtobacterium luteum. The major cellular fatty acids of YN-L-19T were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. The predominant menaquinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified lipid. The average amino acid identity values between strain YN-L-19T and the related strains were 57.9-61.9 %, which were below the genus boundary (70 %). On the basis of the evidence presented in this study, strain YN-L-19T represents a novel species of a new genus in the family Microbacteriaceae, for which the name Ruicaihuangia caeni gen. nov., sp. nov. (type strain YN-L-19T=CCTCC AB 2022401T= KCTC 49935T) is proposed.


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Esgotos , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Composição de Bases , Peptidoglicano/química , Bactérias Gram-Positivas , Vitamina K 2/química
2.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37888849

RESUMO

A Gram-stain-positive, coccoid-shaped, non-spore-forming, facultatively anaerobic bacterium, designated YN-L-12T, was isolated from the activate sludge of a pesticide plant. Colonies on tryptone soya agar were small, white, opaque and circular. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YN-L-12T belonged to the genus of Jeotgalibaca, and showed the highest similarity to Jeotgalibaca arthritidis 1805-02T (97.0 %), followed by Jeotgalibaca ciconiae H21T32T (96.5 %), Jeotgalibaca porci 1804-02T (95.6 %) and Jeotgalibaca dankookensis EX-07T (95.4 %). The strain grew at 15-37 °C (optimum, 30 °C), with 0-6.5 % (w/v) NaCl (optimum, 0.5 %) and at pH 7-9 (optimum, pH 7.5). The major fatty acids were C18 : 1 ω9c, C16 : 1 ω9c and C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and an unidentified lipid. The DNA G+C content of the strain was 41.1 mol%. Average nucleotide identity values between strain YN-L-12T and J. arthritidis 1805-02T and J. ciconiae H21T32T were 72.8 and 72.3 %, respectively. The digital DNA-DNA hybridization values between YN-L-12T and J. arthritidis 1805-02T and J. ciconiae H21T32T were 24.1 and 20.3 %, respectively. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain YN-L-12T represents a novel species of the genus Jeotgalibaca, for which the name Jeotgalibaca caeni sp. nov. is proposed, with strain YN-L-12T (=KCTC 43533T=CCTCC AB 2022400T) as the type strain.


Assuntos
Ácidos Graxos , Esgotos , Ácidos Graxos/química , Esgotos/microbiologia , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
3.
Chemosphere ; 330: 138749, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086982

RESUMO

4-Chloro-2-methylphenoxyacetic acid (MCPA) is a widely used herbicide across the world. MCPA is persistent and easily transports into anoxic environment, such as groundwater, sediments and deep soils. However, little research on anaerobic microbial degradation of MCPA was carried out. The functional microorganisms as well as the catabolic pathway are still unknown. In this research, an anaerobic MCPA-degrading bacterial consortium was enriched from the river sediment near a pesticide-manufacturing plant. After about 6 months' acclimation, the MCPA transformation rate of the consortium reached 4.32 µmol g-1 day-1, 25 times faster than that of the original sludge. 96% of added MCPA (2.5 mM) was degraded within 9 d of incubation. Three metabolites including 4-chloro-2-methylphenol (MCP), 2-methylphenol (2-MP) and phenol were identified during the anaerobic degradation of MCPA. An anaerobic catabolic pathway was firstly proposed: firstly, MCPA was transformed to MCP via the cleavage of the aryl ether, then MCP was reductively dechlorinated to 2-MP which was further demethylated to phenol. The 16S rRNA gene amplicon sequencing revealed a substantial shift in the bacterial community composition after the acclimation. SBR1031, Acidaminococcaceae, Aminicenantales, Syntrophorhabdus, Acidaminobacter, Bacteroidetes_vadinHA17, Methanosaeta, Bathyarchaeia, KD4-96, Anaeromyxobacter, and Dehalobacter were significantly increased in the enriched consortium after acclimation, and positively correlated with the anaerobic degradation of MCPA as suggested by heat map correlation analysis. This study provides a basis for further elucidation of the anaerobic catabolism of MCPA, and contributes to developing efficient and low-cost anaerobic treatment technologies for MCPA pollution.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Esgotos , Anaerobiose , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Herbicidas/análise , Bactérias/genética , Bactérias/metabolismo , Fenol/metabolismo , Aclimatação
4.
Curr Microbiol ; 79(12): 381, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329290

RESUMO

A bacterium, designated 50T was isolated from the sediment of a pesticide plant in Shandong Province, PR China. The strain was non-motile, Gram stain-negative, rod shaped and grew optimally on NA medium at 30 °C, pH 7.5 and with 0% (w/v) NaCl. Strain 50T showed the highest 16S rRNA gene sequence similarity with Lysobacter pocheonensis Gsoil 193T (96.7%), followed by Luteimonas lumbrici 1.1416T (96.5%). Phylogenetic analyses based on 16S rRNA indicated that strain 50T and Luteimonas lumbrici 1.1416T were clustered with the genus of Lysobacter and formed a subclade with Lysobacter pocheonensis Gsoil 193T. In the phylogenetic analysis based on the genome sequences, strain 50T and Luteimonas lumbrici 1.1416T were also clustered with the type strains of the genus Lysobacter. The obtained ANI and the dDDH value between 50T and Luteimonas lumbrici 1.1416T were 80.6% and 24.0%, respectively. The respiratory quinone was ubiquinone-8 (Q-8), and the major cellular fatty acids were iso-C15: 0 (31.7%), summed feature 9 (iso-C17:1 ω9c or C16:0 10-methyl) (23.7%), iso-C17:0 (14.3%) and iso-C16:0 (12.6%). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified aminophospholipid, unidentified phospholipid and unidentified lipid. The genomic DNA G + C content was 69.5 mol%. According to the phenotypic, chemotaxonomic and phylogenetic analyses, strain 50T represents a novel species of the genus Lysobacter, for which the name Lysobacter sedimenti sp. nov. is proposed, with strain 50T (= KCTC 92088T = CCTCC AB 2022035T) as the type strain. In this study, it is also proposed that Luteimonas lumbrici should be transferred to the genus Lysobacter as Lysobacter lumbrici comb. nov. The type strain of Lysobacter lumbrici is 1.1416T (= KCTC 62979T = CCTCC AB 2018348T).


Assuntos
Lysobacter , Oligoquetos , Xanthomonadaceae , Animais , RNA Ribossômico 16S/genética , Filogenia , Oligoquetos/genética , Microbiologia do Solo , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Xanthomonadaceae/genética , Fosfolipídeos/química , Ácidos Graxos/química
5.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751492

RESUMO

The fault detection and isolation are very important for the driving safety of autonomous vehicles. At present, scholars have conducted extensive research on model-based fault detection and isolation algorithms in vehicle systems, but few of them have been applied for path tracking control. This paper determines the conditions for model establishment of a single-track 3-DOF vehicle dynamics model and then performs Taylor expansion for modeling linearization. On the basis of that, a novel fault-tolerant model predictive control algorithm (FTMPC) is proposed for robust path tracking control of autonomous vehicle. First, the linear time-varying model predictive control algorithm for lateral motion control of vehicle is designed by constructing the objective function and considering the front wheel declination and dynamic constraint of tire cornering. Then, the motion state information obtained by multi-sensory perception systems of vision, GPS, and LIDAR is fused by using an improved weighted fusion algorithm based on the output error variance. A novel fault signal detection algorithm based on Kalman filtering and Chi-square detector is also designed in our work. The output of the fault signal detector is a fault detection matrix. Finally, the fault signals are isolated by multiplication of signal matrix, fault detection matrix, and weight matrix in the process of data fusion. The effectiveness of the proposed method is validated with simulation experiment of lane changing path tracking control. The comparative analysis of simulation results shows that the proposed method can achieve the expected fault-tolerant performance and much better path tracking control performance in case of sensor failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA