Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 853-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487942

RESUMO

Warfarin is a widely used anticoagulant, and its S-enantiomer has higher potency compared to the R-enantiomer. S-warfarin is mainly metabolized by cytochrome P450 (CYP) 2C9, and its pharmacological target is vitamin K epoxide reductase complex subunit 1 (VKORC1). Both CYP2C9 and VKORC1 have genetic polymorphisms, leading to large variations in the pharmacokinetics (PKs) and pharmacodynamics (PDs) of warfarin in the population. This makes dosage management of warfarin difficult, especially in the case of drug-drug interactions (DDIs). This study provides a whole-body physiologically-based pharmacokinetic/PD (PBPK/PD) model of S-warfarin for predicting the effects of drug-drug-gene interactions on S-warfarin PKs and PDs. The PBPK/PD model of S-warfarin was developed in PK-Sim and MoBi. Drug-dependent parameters were obtained from the literature or optimized. Of the 34 S-warfarin plasma concentration-time profiles used, 96% predicted plasma concentrations within twofold range compared to observed data. For S-warfarin plasma concentration-time profiles with CYP2C9 genotype, 364 of 386 predicted plasma concentration values (~94%) fell within the twofold of the observed values. This model was tested in DDI predictions with fluconazole as CYP2C9 perpetrators, with all predicted DDI area under the plasma concentration-time curve to the last measurable timepoint (AUClast) ratio within twofold of the observed values. The anticoagulant effect of S-warfarin was described using an indirect response model, with all predicted international normalized ratio (INR) within twofold of the observed values. This model also incorporates a dose-adjustment method that can be used for dose adjustment and predict INR when warfarin is used in combination with CYP2C9 perpetrators.


Assuntos
Anticoagulantes , Citocromo P-450 CYP2C9 , Interações Medicamentosas , Fluconazol , Modelos Biológicos , Vitamina K Epóxido Redutases , Varfarina , Varfarina/farmacocinética , Varfarina/farmacologia , Varfarina/administração & dosagem , Humanos , Fluconazol/farmacologia , Fluconazol/farmacocinética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Anticoagulantes/farmacocinética , Anticoagulantes/farmacologia , Anticoagulantes/administração & dosagem , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo , Polimorfismo Genético , Coeficiente Internacional Normatizado
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 783-794, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658213

RESUMO

Schisandrin stands as one of the primary active compounds within the widely used traditional medicinal plant Schisandra chinensis (Turcz.) Baill. This compound exhibits sedative, hypnotic, anti-aging, antioxidant, and immunomodulatory properties, showcasing its effectiveness across various liver diseases while maintaining a favorable safety profile. However, the bioavailability of schisandrin is largely affected by hepatic and intestinal first-pass metabolism, which limits the clinical efficacy of schisandrin. In this paper, we review the various pharmacological effects and related mechanisms of schisandrin, in order to provide reference for subsequent drug research and promote its medicinal value.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Compostos Policíclicos , Medicamentos de Ervas Chinesas/farmacologia , Lignanas/farmacologia , Ciclo-Octanos/farmacologia , Compostos Policíclicos/farmacologia
3.
Chin Med ; 18(1): 112, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674245

RESUMO

BACKGROUND: According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS: The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS: Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1ß, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION: It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.

4.
CPT Pharmacometrics Syst Pharmacol ; 12(7): 1001-1015, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170680

RESUMO

Levetiracetam (LEV) is an anti-epileptic drug approved for use in various populations. The pharmacokinetic (PK) behavior of LEV may be altered in the elderly and patients with renal and hepatic impairment. Thus, dosage adjustment is required. This study was conducted to investigate how the physiologically-based PK (PBPK) model describes the PKs of LEV in adult and elderly populations, as well as to predict the PKs of LEV in patients with renal and hepatic impairment in both populations. The whole-body PBPK models were developed using the reported physicochemical properties of LEV and clinical data. The models were validated using data from clinical studies with different dose ranges and different routes and intervals of administration. The fit performance of the models was assessed by comparing predicted and observed blood concentration data and PK parameters. It is recommended that the doses be reduced to ~70%, 60%, and 45% of the adult dose for the mild, moderate, and severe renal impairment populations and ~95%, 80%, and 57% of the adult dose for the Child Pugh-A (CP-A), Child Pugh-B (CP-B), and Child Pugh-C (CP-C) hepatic impairment populations, respectively. No dose adjustment is required for the healthy elderly population, but dose reduction is required for the elderly with organ dysfunction accordingly, on a scale similar to that of adults. A PBPK model of LEV was successfully developed to optimize dosing regimens for special populations.


Assuntos
Hepatopatias , Insuficiência Renal , Adulto , Humanos , Idoso , Levetiracetam , Rim , Modelos Biológicos
5.
J Pharm Sci ; 112(10): 2667-2675, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37023853

RESUMO

Levetiracetam (Lev) is an antiepileptic drug that has been increasingly used in the epilepsy pediatric population in recent years, but its pharmacokinetic behavior in pediatric population needs to be characterized clearly. Clinical trials for the pediatric drug remain difficult to conduct due to ethical and practical factors. The purpose of this study was to use the physiologically based pharmacokinetic (PBPK) model to predict changes in plasma exposure of Lev in pediatric patients and to provide recommendations for dose adjustment. A PBPK model of Lev in adults was developed using PK-Sim® software and extrapolated to the entire age range of the pediatric population. The model was evaluated using clinical pharmacokinetic data. The results showed the good fit between predictions and observations of the adult and pediatric models. The recommended doses for neonates, infants and children are 0.78, 1.67 and 1.22 times that of adults, respectively. Moreover, at the same dose, plasma exposure in adolescents was similar to that of adults. The PBPK models of Lev for adults and pediatrics were successfully developed and validated to provide a reference for the rational administration of drugs in the pediatric population.


Assuntos
Epilepsia , Modelos Biológicos , Lactente , Recém-Nascido , Adulto , Adolescente , Criança , Humanos , Levetiracetam , Anticonvulsivantes/farmacocinética , Epilepsia/tratamento farmacológico , Preparações Farmacêuticas , Simulação por Computador
6.
Curr Comput Aided Drug Des ; 19(3): 192-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36424782

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is currently the leading cause of sudden death in adolescent athletes. Schisandrin is a quality marker of the traditional Chinese medicine Schisandra chinensis, which has an excellent therapeutic effect on HCM, but its pharmacological mechanism remains unclear. OBJECTIVE: This study aimed to explore the potential and provide scientific evidence for schisandrin as a lead compound against hypertrophic cardiomyopathy. METHODS: The drug-like properties of schisandrin were predicted using the SwissADME website. Then, the PharmMapper database was used to predict potential drug targets and match gene names in the Uniprot database. HCM targets were collected from NCBI, OMIM, and Genecards databases and intersected with drug targets. The intersection targets were imported into the STRING database for PPI analysis, and core targets were identified. KEGG and GO enrichment analysis was performed on the core targets through the DAVID database, and all network maps were imported into Cytoscape software for visualization optimization. HCM-related datasets were downloaded from the GEO database to analyze core targets and screen differentially expressed target genes for molecular docking. RESULTS: After the PPI network analysis of the intersection targets of drugs and diseases, 12 core targets were screened out. The KEGG analysis results showed that they were mainly involved in Rap1, TNF, FoxO, PI3K-Akt, and other signaling pathways. After differential analysis, PPARG, EGFR, and MMP3 targets were also screened. The molecular docking results showed that schisandrin was well bound to the protein backbone of each target. CONCLUSION: This study used network pharmacology combined with differential expression and molecular docking to predict that schisandrin may treat HCM by acting on PPARG, EGFR, and MMP3 targets, and the regulatory process may involve signaling pathways, such as Rap1, TNF, FoxO, and PI3K-Akt, which may provide a valuable reference for subsequent studies.


Assuntos
Cardiomiopatia Hipertrófica , Metaloproteinase 3 da Matriz , Adolescente , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , PPAR gama , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Cardiomiopatia Hipertrófica/tratamento farmacológico , Biologia Computacional , Receptores ErbB
7.
Front Pharmacol ; 13: 1013432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278167

RESUMO

Background: Propylthiouracil (PTU) treats hyperthyroidism and thyroid crisis in all age groups. A variety of serious adverse effects can occur during clinical use and require attention to its pharmacokinetic and pharmacodynamic characteristics in various populations. Objective: To provide information for individualized dosing and clinical evaluation of PTU in the clinical setting by developing a physiologically based pharmacokinetic (PBPK) model, predicting ADME characteristics, and extrapolating to elderly and pediatric populations. Methods: Relevant databases and literature were retrieved to collect PTU's pharmacochemical properties and ADME parameters, etc. A PBPK model for adults was developed using PK-Sim® software to predict tissue distribution and extrapolated to elderly and pediatric populations. The mean fold error (MFE) method was used to compare the differences between predicted and observed values to assess the accuracy of the PBPK model. The model was validated using PTU pharmacokinetic data in healthy adult populations. Result: The MFE ratios of predicted to observed values of AUC0-t, Cmax, and Tmax were mainly within 0.5 and 2. PTU concentrations in various tissues are lower than venous plasma concentrations. Compared to healthy adults, the pediatric population requires quantitative adjustment to the appropriate dose to achieve the same plasma exposure levels, while the elderly do not require dose adjustments. Conclusion: The PBPK model of PTU was successfully developed, externally validated, and applied to tissue distribution prediction and special population extrapolation, which provides a reference for clinical individualized drug administration and evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA