Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(10): 1966-1977, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37392004

RESUMO

Dissecting the genetic basis of complex traits such as dynamic growth and yield potential is a major challenge in crops. Monitoring the growth throughout growing season in a large wheat population to uncover the temporal genetic controls for plant growth and yield-related traits has so far not been explored. In this study, a diverse wheat panel composed of 288 lines was monitored by a non-invasive and high-throughput phenotyping platform to collect growth traits from seedling to grain filling stage and their relationship with yield-related traits was further explored. Whole genome re-sequencing of the panel provided 12.64 million markers for a high-resolution genome-wide association analysis using 190 image-based traits and 17 agronomic traits. A total of 8327 marker-trait associations were detected and clustered into 1605 quantitative trait loci (QTLs) including a number of known genes or QTLs. We identified 277 pleiotropic QTLs controlling multiple traits at different growth stages which revealed temporal dynamics of QTLs action on plant development and yield production in wheat. A candidate gene related to plant growth that was detected by image traits was further validated. Particularly, our study demonstrated that the yield-related traits are largely predictable using models developed based on i-traits and provide possibility for high-throughput early selection, thus to accelerate breeding process. Our study explored the genetic architecture of growth and yield-related traits by combining high-throughput phenotyping and genotyping, which further unravelled the complex and stage-specific contributions of genetic loci to optimize growth and yield in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Fenótipo , Locos de Características Quantitativas/genética
2.
Plant Phenomics ; 5: 0058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304154

RESUMO

As one of the most widely grown crops in the world, rice is not only a staple food but also a source of calorie intake for more than half of the world's population, occupying an important position in China's agricultural production. Thus, determining the inner potential connections between the genetic mechanisms and phenotypes of rice using dynamic analyses with high-throughput, nondestructive, and accurate methods based on high-throughput crop phenotyping facilities associated with rice genetics and breeding research is of vital importance. In this work, we developed a strategy for acquiring and analyzing 58 image-based traits (i-traits) during the whole growth period of rice. Up to 84.8% of the phenotypic variance of the rice yield could be explained by these i-traits. A total of 285 putative quantitative trait loci (QTLs) were detected for the i-traits, and principal components analysis was applied on the basis of the i-traits in the temporal and organ dimensions, in combination with a genome-wide association study that also isolated QTLs. Moreover, the differences among the different population structures and breeding regions of rice with regard to its phenotypic traits demonstrated good environmental adaptability, and the crop growth and development model also showed high inosculation in terms of the breeding-region latitude. In summary, the strategy developed here for the acquisition and analysis of image-based rice phenomes can provide a new approach and a different thinking direction for the extraction and analysis of crop phenotypes across the whole growth period and can thus be useful for future genetic improvements in rice.

3.
Plant Cell Environ ; 46(2): 549-566, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354160

RESUMO

Salt stress is a major limiting factor that severely affects the survival and growth of crops. It is important to understand the salt stress tolerance ability of Brassica napus and explore the underlying related genetic resources. We used a high-throughput phenotyping platform to quantify 2111 image-based traits (i-traits) of a natural population under three different salt stress conditions and an intervarietal substitution line (ISL) population under nine different stress conditions to monitor and evaluate the salt stress tolerance of B. napus over time. We finally identified 928 high-quality i-traits associated with the salt stress tolerance of B. napus. Moreover, we mapped the salt stress-related loci in the natural population via a genome-wide association study and performed a linkage analysis associated with the ISL population, respectively. These results revealed 234 candidate genes associated with salt stress response, and two novel candidate genes, BnCKX5 and BnERF3, were experimentally verified to regulate the salt stress tolerance of B. napus. This study demonstrates the feasibility of using high-throughput phenotyping-based quantitative trait loci mapping to accurately and comprehensively quantify i-traits associated with B. napus. The mapped loci could be used for genomics-assisted breeding to genetically improve the salt stress tolerance of B. napus.


Assuntos
Brassica napus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Brassica napus/fisiologia , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética
4.
Plant Methods ; 18(1): 138, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522641

RESUMO

BACKGROUND: Virtual plants can simulate the plant growth and development process through computer modeling, which assists in revealing plant growth and development patterns. Virtual plant visualization technology is a core part of virtual plant research. The major limitation of the existing plant growth visualization models is that the produced virtual plants are not realistic and cannot clearly reflect plant color, morphology and texture information. RESULTS: This study proposed a novel trait-to-image crop visualization tool named CropPainter, which introduces a generative adversarial network to generate virtual crop images corresponding to the given phenotypic information. CropPainter was first tested for virtual rice panicle generation as an example of virtual crop generation at the organ level. Subsequently, CropPainter was extended for visualizing crop plants (at the plant level), including rice, maize and cotton plants. The tests showed that the virtual crops produced by CropPainter are very realistic and highly consistent with the input phenotypic traits. The codes, datasets and CropPainter visualization software are available online. CONCLUSION: In conclusion, our method provides a completely novel idea for crop visualization and may serve as a tool for virtual crops, which can assist in plant growth and development research.

5.
Front Plant Sci ; 13: 1028779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457523

RESUMO

Three ecotypes of rapeseed, winter, spring, and semi-winter, have been formed to enable the plant to adapt to different geographic areas. Although several major loci had been found to contribute to the flowering divergence, the genomic footprints and associated dynamic plant architecture in the vegetative growth stage underlying the ecotype divergence remain largely unknown in rapeseed. Here, a set of 41 dynamic i-traits and 30 growth-related traits were obtained by high-throughput phenotyping of 171 diverse rapeseed accessions. Large phenotypic variation and high broad-sense heritability were observed for these i-traits across all developmental stages. Of these, 19 i-traits were identified to contribute to the divergence of three ecotypes using random forest model of machine learning approach, and could serve as biomarkers to predict the ecotype. Furthermore, we analyzed genomic variations of the population, QTL information of all dynamic i-traits, and genomic basis of the ecotype differentiation. It was found that 213, 237, and 184 QTLs responsible for the differentiated i-traits overlapped with the signals of ecotype divergence between winter and spring, winter and semi-winter, and spring and semi-winter, respectively. Of which, there were four common divergent regions between winter and spring/semi-winter and the strongest divergent regions between spring and semi-winter were found to overlap with the dynamic QTLs responsible for the differentiated i-traits at multiple growth stages. Our study provides important insights into the divergence of plant architecture in the vegetative growth stage among the three ecotypes, which was contributed to by the genetic differentiation, and might contribute to environmental adaption and yield improvement.

6.
New Phytol ; 234(4): 1315-1331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244216

RESUMO

High temperatures cause huge yield losses in rice. Heat-shock factors (Hsfs) are key transcription factors which regulate the expression of heat stress-responsive genes, but natural variation in and functional characterization of Hsfs have seldom been reported. A significant heat response locus was detected via a genome-wide association study (GWAS) using green leaf area as an indicative trait. A miniature inverted-repeat transposable element (MITE) in the promoter of a candidate gene, HTG3 (heat-tolerance gene on chromosome 3), was found to be significantly associated with heat-induced expression of HTG3 and heat tolerance (HT). The MITE-absent variant has been selected in heat-prone rice-growing regions. HTG3a is an alternatively spliced isoform encoding a functional Hsf, and experiments using overexpression and knockout rice lines showed that HTG3a positively regulates HT at both vegetative and reproductive stages. The HTG3-regulated genes were enriched for heat shock proteins and jasmonic acid signaling. Two heat-responsive JASMONATE ZIM-DOMAIN (JAZ) genes were confirmed to be directly upregulated by HTG3a, and one of them, OsJAZ9, positively regulates HT. We conclude that HTG3 plays an important role in HT through the regulation of JAZs and other heat-responsive genes. The MITE-absent allele may be valuable for HT breeding in rice.


Assuntos
Oryza , Termotolerância , Ciclopentanos , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Oxilipinas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Termotolerância/genética
7.
Genome Biol ; 22(1): 185, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34162419

RESUMO

BACKGROUND: Drought threatens the food supply of the world population. Dissecting the dynamic responses of plants to drought will be beneficial for breeding drought-tolerant crops, as the genetic controls of these responses remain largely unknown. RESULTS: Here we develop a high-throughput multiple optical phenotyping system to noninvasively phenotype 368 maize genotypes with or without drought stress over a course of 98 days, and collected multiple optical images, including color camera scanning, hyperspectral imaging, and X-ray computed tomography images. We develop high-throughput analysis pipelines to extract image-based traits (i-traits). Of these i-traits, 10,080 were effective and heritable indicators of maize external and internal drought responses. An i-trait-based genome-wide association study reveals 4322 significant locus-trait associations, representing 1529 quantitative trait loci (QTLs) and 2318 candidate genes, many that co-localize with previously reported maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local and distant regulatory variants that control the expression of the candidate genes. We use genetic mutation analysis to validate two new genes, ZmcPGM2 and ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the candidate genes as drought-tolerant genetic markers is revealed by genome selection analysis, and 15 i-traits are identified as potential markers for maize drought tolerance breeding. CONCLUSION: Our study demonstrates that combining high-throughput multiple optical phenotyping and GWAS is a novel and effective approach to dissect the genetic architecture of complex traits and clone drought-tolerance associated genes.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta , Proteínas de Plantas/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Zea mays/genética , Secas , Processamento Eletrônico de Dados , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico , Tomografia Computadorizada por Raios X , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA