Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372368

RESUMO

The fibrillin (FBN) gene family is widely distributed in all photosynthetic organisms. Members of this gene family are involved in plant growth and development and their response to various biotic and abiotic stress factors. In this study, 16 members of FBN were identified in Glycine max and characterized by using different bioinformatics tools. Phylogenetic analysis classified FBN genes into seven groups. The presence of stress-related cis-elements in the upstream region of GmFBN highlighted their role in tolerance against abiotic stresses. To further decipher the function, physiochemical properties, conserved motifs, chromosomal localization, subcellular localization, and cis-acting regulatory elements were also analyzed. Gene expression analysis based on FPKM values revealed that GmFBNs greatly enhanced soybean drought tolerance and controlled the expression of several genes involved in drought response, except for GmFBN-4, GmFBN-5, GmFBN-6, GmFBN-7 and GmFBN-9. For high throughput genotyping, an SNP-based CAPS marker was also developed for the GmFBN-15 gene. The CAPS marker differentiated soybean genotypes based on the presence of either the GmFBN-15-G or GmFBN-15-A alleles in the CDS region. Association analysis showed that G. max accessions containing the GmFBN-15-A allele at the respective locus showed higher thousand seed weight compared to accessions containing the GmFBN-15-G allele. This research has provided the basic information to further decipher the function of FBN in soybean.


Assuntos
Secas , Glycine max , Glycine max/genética , Glycine max/metabolismo , Filogenia , Fibrilinas/genética , Sequências Reguladoras de Ácido Nucleico
2.
Front Plant Sci ; 13: 996265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204049

RESUMO

Cysteine-rich poly comb-like protein (CPP) is a member of cysteine-rich transcription factors that regulates plant growth and development. In the present work, we characterized twelve CPP transcription factors encoding genes in soybean (Glycine max). Phylogenetic analyses classified CPP genes into six clades. Sequence logos analyses between G. max and G. soja amino acid residues exhibited high conservation. The presence of growth and stress-related cis-acting elements in the upstream regions of GmCPPs highlight their role in plant development and tolerance against abiotic stress. Ka/Ks levels showed that GmCPPs experienced limited selection pressure with limited functional divergence arising from segmental or whole genome duplication events. By using the PAN-genome of soybean, a single nucleotide polymorphism was identified in GmCPP-6. To perform high throughput genotyping, a kompetitive allele-specific PCR (KASP) marker was developed. Association analyses indicated that GmCPP-6-T allele of GmCPP-6 (in exon region) was associated with higher thousand seed weight under both water regimes (well-water and water-limited). Taken together, these results provide vital information to further decipher the biological functions of CPP genes in soybean molecular breeding.

3.
Front Genet ; 13: 949027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937992

RESUMO

The main function of histone protein is to provide support to the structure of chromosomes. It helps in binding a long thread of DNA into a more condensed shape to fit into the nucleus. From histone variants, histone H3 (HH3) plays a crucial role in plant growth and development. Characterization of histones has not been reported in Glycine max till now. The objective of this study was to characterize the HH3 gene family for molecular breeding of G. max. In this study, 17 HH3 members in G. max were identified by performing local BLASTp using HH3 members from Arabidopsis as a query. Phylogenetic analysis classified HH3 genes in seven clades. Sequence logo analysis among Arabidopsis thaliana, Oryza sativa, and Glycine max showed a higher level of similarity in amino acids. Furthermore, conserveness of G. max HH3 genes was also confirmed by Gene Structure Display. Ten paralogous gene pairs were identified in GmHH3 genes in the Glycine max genome by conducting collinearity analysis. G. max HH3 genes have experienced strong purifying selection pressure, with limited functional divergence originating from the segmental and whole-genome duplication, as evidenced by the Ka/Ks ratio. The KASP marker was developed for GmHH3-3 gene. Genotyping was performed on 46 G. max genotypes. This differentiation was based upon the presence of either GmHH3-3-C or GmHH3-3-T allele in the CDS region. The results showed that G. max accessions containing the GmHH3-3-T allele at respective locus showed higher thousand seed weight than that of those accessions that contain the GmHH3-3-C allele. This research provides the basic information to further decipher the function of HH3 in soybean.

4.
PLoS One ; 16(7): e0253836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214130

RESUMO

Vascular plant one-zinc-finger (VOZ) transcription factors regulate plant growth and development under drought conditions. Six VOZ transcription factors encoding genes exist in soybean genome (both in Glycine max and Glycine soja). Herein, GmVOZs and GsVOZs were identified through in silico analysis and characterized with different bioinformatics tools and expression analysis. Phylogenetic analysis classified VOZ genes in four groups. Sequence logos analysis among G. max and G. soja amino acid residues revealed higher conservation. Presence of stress related cis-elements in the upstream regions of GmVOZs and GsVOZs highlights their role in tolerance against abiotic stresses. The collinearity analysis identified 14 paralogous/orthologous gene pairs within and between G. max and G. soja. The Ka/Ks values showed that soybean VOZ genes underwent selection pressure with limited functional deviation arising from whole genome and segmental duplication. The GmVOZs and GsVOZs were found to express in roots and leaves at seedling stage. The qRT-PCR revealed that GmVOZs and GsVOZs transcripts can be regulated by abiotic stresses such as polyethylene glycol (PEG). The findings of this study will provide a reference to decipher physiological and molecular functions of VOZ genes in soybean.


Assuntos
Aclimatação/genética , Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Folhas de Planta , Proteínas de Plantas/metabolismo , Raízes de Plantas , Plântula , Alinhamento de Sequência , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA