Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Eur J Med Chem ; 275: 116567, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38865743

RESUMO

New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.

2.
Front Oncol ; 13: 1245248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901327

RESUMO

In the early stages of carcinogenesis, the transformed cells become "invisible" to the immune system. From this moment on, the evolution of the tumor depends essentially on the genotype of the primitive cancer cells and their subsequent genetic drift. The role of the immune system in blocking tumor progression from the earliest stages is largely underestimated because by the time tumors are clinically detectable, the immune system has already completely failed its task. Therefore, a clinical treatment capable of restoring the natural anti-tumor role of the immune system could prove to be the "ultimate weapon" against cancer. Herein, we propose a novel therapeutic approach for the treatment of solid cancer that exploits the capability of activated monocytes to transfer major histocompatibility complex I (MHC-I) molecules bound to antigenic peptides to cancer cells using microvesicles as cargo, making tumor cells target of a "natural" CD8+ T lymphocyte cytotoxic response.

3.
Eur J Med Chem ; 252: 115270, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934484

RESUMO

Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AKR1B1) are two enzymes crucially involved in the development of T2DM and its chronic complications and, therefore, dual inhibitors targeted to both these enzymes could provide novel agents for the treatment of this complex pathological condition. In continuing our search for dual-targeted PTP1B/AKR1B1 inhibitors, we designed new (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids. Among them, 3-(4-phenylbutoxy)benzylidene derivatives 6f and 7f, endowed with interesting inhibitory activity against both targets, proved to control specific cellular pathways implicated in the development of T2DM and related complications.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Monoéster Fosfórico Hidrolases , Ligantes , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Aldeído Redutase
4.
Pharmaceutics ; 15(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36839851

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications.

5.
J Med Chem ; 66(5): 3566-3587, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36790935

RESUMO

A new series of analogues or derivatives of the previously reported PPARα/γ dual agonist LT175 allowed the identification of ligand 10, which was able to potently activate both PPARα and -γ subtypes as full and partial agonists, respectively. Docking studies were performed to provide a molecular explanation for this different behavior on the two different targets. In vivo experiments showed that this compound induced a significant reduction in blood glucose and lipid levels in an STZ-induced diabetic mouse model displaying no toxic effects on bone, kidney, and liver. By examining in depth the antihyperglycemic activity of 10, we found out that it produced a slight but significant inhibition of the mitochondrial pyruvate carrier, acting also through insulin-independent mechanisms. This is the first example of a PPARα/γ dual agonist reported to show this inhibitory effect representing, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Camundongos , Animais , PPAR alfa/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Agonistas PPAR-gama , PPAR gama/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
6.
FASEB J ; 36(12): e22655, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421008

RESUMO

Trodusquemine is an aminosterol with a variety of biological and pharmacological functions, such as acting as an antimicrobial, stimulating body weight loss and interfering with the toxicity of proteins involved in the development of Alzheimer's and Parkinson's diseases. The mechanisms of interaction of aminosterols with cells are, however, still largely uncharacterized. Here, by using fluorescently labeled trodusquemine (TRO-A594 and TRO-ATTO565), we show that trodusquemine binds initially to the plasma membrane of living cells, that the binding affinity is dependent on cholesterol, and that trodusquemine is then internalized and mainly targeted to lysosomes after internalization. We also found that TRO-A594 is able to strongly and selectively bind to myelinated fibers in fixed mouse brain slices, and that it is a marker compatible with tissue clearing and light-sheet fluorescence microscopy or expansion microscopy. In conclusion, this work contributes to further characterize the biology of aminosterols and provides a new tool for nerve labeling suitable for the most advanced microscopy techniques.


Assuntos
Colestanos , Animais , Camundongos , Colestanos/farmacologia , Espermina/farmacologia , Microscopia de Fluorescência/métodos , Colesterol
7.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337123

RESUMO

Diabetes mellitus (DM) represents a complex and multifactorial disease that causes metabolic disorders with acute and long-term serious complications. The onset of DM, with over 90% of cases of diabetes classified as type 2, implies several metabolic dysfunctions leading to consider DM a worldwide health problem. In this frame, protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) are two emerging targets involved in the development of type 2 diabetes mellitus (T2DM) and its chronic complications. Herein, we employed a marine-derived dual type inhibitor of these enzymes, phosphoeleganin, as chemical starting point to perform a fragment-based process in search for new inhibitors. Phosphoeleganin was both disassembled by its oxidative cleavage and used as model structure for the synthesis of a small library of functionalized derivatives as rationally designed analogues. Pharmacological screening supported by in silico docking analysis outlined the mechanism of action against PTP1B exerted by a phosphorylated fragment and a synthetic simplified analogue, which represent the most potent inhibitors in the library.

8.
Eur J Med Chem ; 235: 114240, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325635

RESUMO

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors involved in the regulation of the metabolic homeostasis and therefore represent valuable therapeutic targets for the treatment of metabolic diseases. The development of more balanced drugs interacting with PPARs, devoid of the side-effects showed by the currently marketed PPARγ full agonists, is considered the major challenge for the pharmaceutical companies. Here we present a chemoinformatics search approach for new ligands that let us identify a novel PPAR pan-agonist with a very attractive activity profile being able to reduce lipid accumulation and improve insulin sensitivity. This compound represents, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Quimioinformática , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ligantes , Lipídeos , PPAR gama/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
9.
Mar Drugs ; 20(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35049920

RESUMO

The chemical investigation of the Mediterranean ascidian Clavelina lepadiformis has led to the isolation of a new lepadin, named lepadin L, and two known metabolites belonging to the same family, lepadins A and B. The planar structure and relative configuration of the decahydroquinoline ring of lepadin L were established both by means of HR-ESIMS and by a detailed as extensive analysis of 1D and 2D NMR spectra. Moreover, microscale derivatization of the new alkaloid lepadin L was performed to assess the relative configuration of the functionalized alkyl side chain. Lepadins A, B, and L were tested for their cytotoxic activity on a panel of cancer cell lines (human melanoma [A375], human breast [MDA-MB-468], human colon adenocarcinoma [HT29], human colorectal carcinoma [HCT116], and mouse myoblast [C2C12]). Interestingly, a deeper investigation into the mechanism of action of the most cytotoxic metabolite, lepadin A, on the A375 cells has highlighted its ability to induce a strongly inhibition of cell migration, G2/M phase cell cycle arrest and a dose-dependent decrease of cell clonogenity, suggesting that it is able to impair self-renewing capacity of A375 cells.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Urocordados , Alcaloides/química , Animais , Antineoplásicos/química , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Mar Mediterrâneo , Camundongos , Relação Estrutura-Atividade
10.
Eur J Nutr ; 61(4): 1905-1918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35066640

RESUMO

PURPOSE: The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. METHODS: The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. RESULTS: We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. CONCLUSION: Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.


Assuntos
Resistência à Insulina , Proteínas Tirosina Fosfatases , Receptor de Insulina , Chá , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Insulina/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Chá/química
11.
Mar Drugs ; 19(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34677434

RESUMO

An in-depth study on the inhibitory mechanism on protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) enzymes, including analysis of the insulin signalling pathway, of phosphoeleganin, a marine-derived phosphorylated polyketide, was achieved. Phosphoeleganin was demonstrated to inhibit both enzymes, acting respectively as a pure non-competitive inhibitor of PTP1B and a mixed-type inhibitor of AR. In addition, in silico docking analyses to evaluate the interaction mode of phosphoeleganin with both enzymes were performed. Interestingly, this study showed that phosphoeleganin is the first example of a dual inhibitor polyketide extracted from a marine invertebrate, and it could be used as a versatile scaffold structure for the synthesis of new designed multiple ligands.


Assuntos
Hipoglicemiantes/farmacologia , Policetídeos/farmacologia , Urocordados , Aldeído Redutase/metabolismo , Animais , Organismos Aquáticos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Hep G2/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Mar Mediterrâneo , Simulação de Acoplamento Molecular , Policetídeos/química , Policetídeos/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
12.
Nanomaterials (Basel) ; 11(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578535

RESUMO

Zinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of Dreissena polymorpha (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl2 nominal concentrations (1-10-50-100 mg/L), including those environmentally relevant. Cellulose-based nanosponges (CNS) were also tested to assess their safety and suitability for Zn removal from freshwater. Zebra mussels were exposed to 50 mg/L ZnCl2 alone or incubated with 1.25 g/L of CNS (2 h) and then removed by filtration. The effect of Zn decontamination induced by CNS has been verified by the acute toxicity bioassay Microtox®. DNA primary damage was investigated by the Comet assay; micronuclei frequency and nuclear morphological alterations were assessed by Cytome assay in mussels' haemocytes. The results confirmed the genotoxic effect of ZnCl2 in zebra mussel haemocytes at 48 h and 7-day exposure time. Zinc concentrations were measured in CNS, suggesting that cellulose-based nanosponges were able to remove Zn(II) by reducing its levels in exposure waters and soft tissues of D. polymorpha in agreement with the observed restoration of genetic damage exerted by zinc exposure alone.

13.
Molecules ; 26(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443409

RESUMO

Diabetes mellitus (DM) represents a group of metabolic disorders that leads to acute and long-term serious complications and is considered a worldwide sanitary emergence. Type 2 diabetes (T2D) represents about 90% of all cases of diabetes, and even if several drugs are actually available for its treatment, in the long term, they show limited effectiveness. Most traditional drugs are designed to act on a specific biological target, but the complexity of the current pathologies has demonstrated that molecules hitting more than one target may be safer and more effective. The purpose of this review is to shed light on the natural compounds known as α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) dual-inhibitors that could be used as lead compounds to generate new multitarget antidiabetic drugs for treatment of T2D.


Assuntos
Inibidores Enzimáticos/química , Hipoglicemiantes/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , alfa-Glucosidases/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , alfa-Glucosidases/química , alfa-Glucosidases/genética
14.
Nanomaterials (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063431

RESUMO

Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 µg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.

15.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435264

RESUMO

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
16.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938003

RESUMO

The contamination of freshwaters by heavy metals represents a great problem, posing a threat for human and environmental health. Cadmium is classified as carcinogen to humans and its mechanism of carcinogenicity includes genotoxic events. In this study a recently developed eco-friendly cellulose-based nanosponge (CNS) was investigated as a candidate in freshwater nano-remediation process. For this purpose, CdCl2 (0.05 mg L-1) contaminated artificial freshwater (AFW) was treated with CNS (1.25 g L-1 for 2 h), and cellular responses were analyzed before and after CNS treatment in Dreissena polymorpha hemocytes. A control group (AFW) and a negative control group (CNS in AFW) were also tested. DNA primary damage was evaluated by Comet assay while chromosomal damage and cell proliferation were assessed by Cytome assay. AFW exposed to CNS did not cause any genotoxic effect in zebra mussel hemocytes. Moreover, DNA damage and cell proliferation induced by Cd(II) turned down to control level after 2 days when CNS were used. A reduction of Cd(II)-induced micronuclei and nuclear abnormalities was also observed. CNS was thus found to be a safe and effective candidate in cadmium remediation process being efficient in metal sequestering, restoring cellular damage exerted by Cd(II) exposure, without altering cellular physiological activity.

17.
Nanomaterials (Basel) ; 10(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629917

RESUMO

To encourage the applicability of nano-adsorbent materials for heavy metal ion removal from seawater and limit any potential side effects for marine organisms, an ecotoxicological evaluation based on a biological effect-based approach is presented. ZnCl2 (10 mg L-1) contaminated artificial seawater (ASW) was treated with newly developed eco-friendly cellulose-based nanosponges (CNS) (1.25 g L-1 for 2 h), and the cellular and tissue responses of marine mussel Mytilus galloprovincialis were measured before and after CNS treatment. A control group (ASW only) and a negative control group (CNS in ASW) were also tested. Methods: A significant recovery of Zn-induced damages in circulating immune and gill cells and mantle edges was observed in mussels exposed after CNS treatment. Genetic and chromosomal damages reversed to control levels in mussels' gill cells (DNA integrity level, nuclear abnormalities and apoptotic cells) and hemocytes (micronuclei), in which a recovery of lysosomal membrane stability (LMS) was also observed. Damage to syphons, loss of cilia by mantle edge epithelial cells and an increase in mucous cells in ZnCl2-exposed mussels were absent in specimens after CNS treatment, in which the mantle histology resembled that of the controls. No effects were observed in mussels exposed to CNS alone. As further proof of CNS' ability to remove Zn(II) from ASW, a significant reduction of >90% of Zn levels in ASW after CNS treatment was observed (from 6.006 to 0.510 mg L-1). Ecotoxicological evaluation confirmed the ability of CNS to remove Zn from ASW by showing a full recovery of Zn-induced toxicological responses to the levels of mussels exposed to ASW only (controls). An effect-based approach was thus proven to be useful in order to further support the environmentally safe (ecosafety) application of CNS for heavy metal removal from seawater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA