Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683844

RESUMO

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Assuntos
Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster , Desenvolvimento Muscular , Proteínas de Ligação a RNA , Sarcômeros , Animais , Sarcômeros/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Desenvolvimento Muscular/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Splicing de RNA/genética , Miofibrilas/metabolismo , Voo Animal/fisiologia , Processamento Alternativo/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo
2.
Arthropod Struct Dev ; 60: 101004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227643

RESUMO

Lonchoptera lutea males produce giant spermatozoa that are more than 2000 µm long and 1.4 µm wide. Unlike the typical brachyceran spermatozoon, they have a highly asymmetrical cross-section with only a single, albeit very large, mitochondrial derivative and a pair of massive accessory bodies, one of which extends throughout the entire length of the sperm tail. The accessory bodies consist of an electron-dense matrix in which numerous peculiar electron-lucid substructures are embedded. In the mated female, the giant spermatozoa are found inside two tubular spermathecae which are also extremely long, measuring 4000 µm or more.


Assuntos
Dípteros/citologia , Espermatozoides/citologia , Animais , Dípteros/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Espermatozoides/ultraestrutura , Microtomografia por Raio-X
3.
Front Physiol ; 8: 462, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725198

RESUMO

Octopus vulgaris aquaculture is limited due to poor biological knowledge of the paralarval stages (e.g., digestive system functionality), their nutritional requirements (e.g., adequate live diet) and standardization of rearing techniques. These factors are important in explaining the high mortality rate observed in this developmental stage under culture conditions. For a better understanding of nutrition biology of this species, we investigated the 3D microanatomy of the digestive tract of the embryo and paralarvae during the first month of life. O. vulgaris paralarvae digestive system is similar to that in the adult. The "descending branch" has a dorsal position and is formed by the buccal mass, oesophagus and crop. Ventrally, the "ascending branch" is formed by the intestine and the anus. The digestive gland, the posterior salivary glands and the inner yolk sac (in the case of the embryo and hatched paralarvae) are located between the "ascending" and "descending" branches. In the curve of the U-shaped digestive tract, a caecum and the stomach can be found. The reconstructions reveal that anatomically the digestive system is already complete when the paralarvae hatch. The reconstruction of the buccal mass at different post-hatching days has demonstrated that all the necessary structures for food intake are present. However, the radula surface in contact with the pharynx is very small on the first day of life. Although the digestive system has all the structures to feed, the digestive gland and radula take longer to reach full functionality. We have established four development periods: embryonic, early post-hatching, late post-hatching and juvenile-adult. The differentiation between these periods was done by type of feeding (endogenous or exogenous), the state of maturation and hence functionality of the digestive gland, type of growth (linear, no net, or exponential), and measurement of the arm lengths with respect to the mantle length. 3D reconstruction represents a new tool to study the morphology and functionality of the cephalopod digestive system during the first days of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA