Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 8159, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289341

RESUMO

Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.


Assuntos
Átrios do Coração , Ventrículos do Coração , Miócitos Cardíacos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Átrios do Coração/metabolismo , Átrios do Coração/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/citologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Forma Celular , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Receptores Notch/metabolismo
2.
Plants (Basel) ; 13(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273884

RESUMO

Table grape viticulture, due to the impact of climate change, will have to face many challenges in the coming decades, including resistance to pathogens and physiological disorders. Our attention was focused on fruit cracking due to its ubiquitous presence in several species. This study explores the effects of three different treatments on the epidermis and cuticle of table grape berries by evaluating the impact of the girdling technique on various fruit quality parameters, including cuticle thickness, sugar content, acidity, color, bunch weight, and rheological properties. The treatments were (1) calcium chloride (CaCl2), (2) calcium chloride + salicylic acid (CaCl2 + SA), and (3) calcium chloride + Ascophyllum nodosum (CaCl2 + AN), with and without girdling, plus an untreated control. This research was conducted over the 2021-2022 growing season in a commercial vineyard in Licodia Eubea, Sicily, Italy. The results indicate significant variations in cuticle thickness and other qualitative traits throughout the growth and ripening phases, with notable differences depending on the treatment used. This study's findings suggest that specific treatments can influence the structural integrity of the grape cuticle, potentially impacting the fruit's susceptibility to cracking and overall marketability. The findings provide valuable insights into the role of chemical treatments and cultural techniques in enhancing fruit quality and resistance to environmental stresses in table grape cultivation.

3.
Biology (Basel) ; 13(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39194533

RESUMO

Agriculture faces the dual challenge of increasing food production and safeguarding the environment. Climate change exacerbates this challenge, reducing crop yield and biomass due to drought stress, especially in semi-arid regions where Citrus plants are cultivated. Understanding the molecular mechanisms underlying drought tolerance in Citrus is crucial for developing adaptive strategies. Plants of two citrus rootstocks, Carrizo Citrange and Bitters (C22), were grown in aerated half-strength Hoagland's nutrient solution. Post-acclimation, the plants were exposed to a solution containing 0% (control) or 15% PEG-8000 for 10 days. Leaf malonyl dialdehyde (MDA) and hydrogen peroxide (H2O2) content were measured to assess the reached oxidative stress level. Total RNA was extracted, sequenced, and de novo-assembled. Weighted Gene Correlation Network Analysis (WGCNA) was conducted to examine the relationship between gene expression patterns and the levels of MDA and H2O2 used as oxidative stress indicators. Plant visual inspection and MDA and H2O2 contents clearly indicate that Bitters is more tolerant than Carrizo towards PEG-induced drought stress. RNA-Seq analysis revealed a significantly higher number of differentially expressed genes (DEGs) in Carrizo (6092) than in Bitters (320), with most being associated with drought sensing, ROS scavenging, osmolyte biosynthesis, and cell wall metabolism. Moreover, the WGCNA identified transcription factors significantly correlated with MDA and H2O2 levels, thus providing insights into drought-coping strategies and offering candidate genes for enhancing citrus drought tolerance.

4.
Nat Commun ; 15(1): 7589, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217144

RESUMO

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.


Assuntos
Endocárdio , Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Endocárdio/citologia , Endocárdio/metabolismo , Hematopoese/fisiologia , Coração/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Análise de Célula Única , Linhagem da Célula , Eritropoese/fisiologia , Animais Geneticamente Modificados
5.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984541

RESUMO

The cardiac extracellular matrix (cECM) is fundamental for organ morphogenesis and maturation, during which time it undergoes remodeling, yet little is known about whether mechanical forces generated by the heartbeat regulate this remodeling process. Using zebrafish as a model and focusing on stages when cardiac valves and trabeculae form, we found that altering cardiac contraction impairs cECM remodeling. Longitudinal volumetric quantifications in wild-type animals revealed region-specific dynamics: cECM volume decreases in the atrium but not in the ventricle or atrioventricular canal. Reducing cardiac contraction resulted in opposite effects on the ventricular and atrial ECM, whereas increasing the heart rate affected the ventricular ECM but had no effect on the atrial ECM, together indicating that mechanical forces regulate the cECM in a chamber-specific manner. Among the ECM remodelers highly expressed during cardiac morphogenesis, we found one that was upregulated in non-contractile hearts, namely tissue inhibitor of matrix metalloproteinase 2 (timp2). Loss- and gain-of-function analyses of timp2 revealed its crucial role in cECM remodeling. Altogether, our results indicate that mechanical forces control cECM remodeling in part through timp2 downregulation.


Assuntos
Matriz Extracelular , Coração , Inibidor Tecidual de Metaloproteinase-2 , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Matriz Extracelular/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Morfogênese , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia
6.
BMC Plant Biol ; 24(1): 509, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844865

RESUMO

BACKGROUND: Among the Citrus species, lemon (Citrus limon Burm f.) is one of the most affected by the two-spotted spider mite (Tetranychus urticae Koch). Moreover, chemical control is hampered by the mite's ability to develop genetic resistance against acaricides. In this context, the identification of the genetic basis of the host resistance could represent a sustainable strategy for spider mite control. In the present study, a marker-trait association analysis was performed on a lemon population employing an association mapping approach. An inter-specific full-sib population composed of 109 accessions was phenotyped through a detached-leaf assays performed in modified Huffaker cells. Those individuals, complemented with two inter-specific segregating populations, were genotyped using a target-sequencing approach called SPET (Single Primer Enrichment Technology), the resulting SNPs were employed for the generation of an integrated genetic map. RESULTS: The percentage of damaged area in the full-sib population showed a quantitative distribution with values ranging from 0.36 to 9.67%. A total of 47,298 SNPs were selected for an association mapping study and a significant marker linked with resistance to spider mite was detected on linkage group 5. In silico gene annotation of the QTL interval enabled the detection of 13 genes involved in immune response to biotic and abiotic stress. Gene expression analysis showed an over expression of the gene encoding for the ethylene-responsive transcription factor ERF098-like, already characterized in Arabidopsis and in rice for its involvement in defense response. CONCLUSION: The identification of a molecular marker linked to the resistance to spider mite attack can pave the way for the development of marker-assisted breeding plan for the development of novel selection coupling favorable agronomical traits (e.g. fruit quality, yield) with a higher resistance toward the mite.


Assuntos
Citrus , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tetranychidae , Animais , Tetranychidae/genética , Tetranychidae/fisiologia , Citrus/genética , Citrus/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Mapeamento Cromossômico , Resistência à Doença/genética
7.
BMC Plant Biol ; 24(1): 160, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429733

RESUMO

BACKGROUND: Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS: Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS: The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.


Assuntos
Antocianinas , Frutas , Frutas/metabolismo , Secas , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
8.
Front Plant Sci ; 15: 1343452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434425

RESUMO

Fruit cracking, a widespread physiological disorder affecting various fruit crops and vegetables, has profound implications for fruit quality and marketability. This mini review delves into the multifaceted factors contributing to fruit cracking and emphasizes the pivotal roles of environmental and agronomic factors in its occurrence. Environmental variables such as temperature, relative humidity, and light exposure are explored as determinants factors influencing fruit cracking susceptibility. Furthermore, the significance of mineral nutrition and plant growth regulators in mitigating fruit cracking risk is elucidated, being calcium deficiency identified as a prominent variable in various fruit species. In recent years, precision farming and monitoring systems have emerged as valuable tools for managing environmental factors and optimizing fruit production. By meticulously tracking parameters such as temperature, humidity, soil moisture, and fruit skin temperature, growers can make informed decisions to prevent or alleviate fruit cracking. In conclusion, effective prevention of fruit cracking necessitates a comprehensive approach that encompasses both environmental and agronomic factors.

9.
Front Plant Sci ; 15: 1360087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501136

RESUMO

Self-incompatibility (SI) is a genetic mechanism common in flowering plants to prevent self-fertilization. Among citrus species, several pummelo, mandarin, and mandarin-like accessions show SI behavior. In these species, SI is coupled with a variable degree of parthenocarpy ensuring the production of seedless fruits, a trait that is highly appreciated by consumers. In Citrus, recent evidences have shown the presence of a gametophytic SI system based on S-ribonucleases (S-RNases) ability to impair self-pollen tube growth in the upper/middle part of the style. In the present study, we combined PCR analysis and next-generation sequencing technologies, to define the presence of S7- and S11-Rnases in the S-genotype of the Citrus clementina (Hort. ex Tan.), the self-incompatible 'Comune' clementine and its self-compatible natural mutant 'Monreal'. The reference genome of 'Monreal' clementine is presented for the first time, providing more robust results on the genetic sequence of the newly discovered S7-RNase. SNP discovery analysis coupled with the annotation of the variants detected enabled the identification of 7,781 SNPs effecting 5,661 genes in 'Monreal' compared to the reference genome of C. clementina. Transcriptome analysis of unpollinated pistils at the mature stage from both clementine genotypes revealed the lack of expression of S7-RNase in 'Monreal' suggesting its involvement in the loss of the SI response. RNA-seq analysis followed by gene ontology studies enabled the identification of 2,680 differentially expressed genes (DEGs), a significant number of those is involved in oxidoreductase and transmembrane transport activity. Merging of DNA sequencing and RNA data led to the identification of 164 DEGs characterized by the presence of at least one SNP predicted to induce mutations with a high effect on their amino acid sequence. Among them, four candidate genes referring to two Agamous-like MADS-box proteins, to MYB111 and to MLO-like protein 12 were validated. Moreover, the transcription factor MYB111 appeared to contain a binding site for the 2.0-kb upstream sequences of the S7- and S11-RNase genes. These results provide useful information about the genetic bases of SI indicating that SNPs present in their sequence could be responsible for the differential expression and the regulation of S7-RNase and consequently of the SI mechanism.

10.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687300

RESUMO

The actin-depolymerizing factor (ADF) gene family regulates changes in actin. However, the entire ADF family in the sweet orange Citrus sinensis has not been systematically identified, and their expressions in different organs and biotic stress have not been determined. In this study, through phylogenetic analysis of the sweet orange ADF gene family, seven CsADFs were found to be highly conserved and sparsely distributed across the four chromosomes. Analysis of the cis-regulatory elements in the promoter region showed that the CsADF gene had the potential to impact the development of sweet oranges under biotic or abiotic stress. Quantitative fluorescence analysis was then performed. Seven CsADFs were differentially expressed against the invasion of Xcc and CLas pathogens. It is worth noting that the expression of CsADF4 was significantly up-regulated at 4 days post-infection. Subcellular localization results showed that CsADF4 was localized in both the nucleus and the cytoplasm. Overexpression of CsADF4 enhanced the sensitivity of sweet orange leaves to Xcc. These results suggest that CsADFs may regulate the interaction of C. sinensis and bacterial pathogens, providing a way to further explore the function and mechanisms of ADF in the sweet orange.

11.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628825

RESUMO

The ETHYLENE INSENSITIVE3-LIKE (EIL) family is one of the most important transcription factor (TF) families in plants and is involved in diverse plant physiological and biochemical processes. In this study, ten EIL transcription factors (CsEILs) in sweet orange were systematically characterized via whole-genome analysis. The CsEIL genes were unevenly distributed across the four sweet orange chromosomes. Putative cis-acting regulatory elements (CREs) associated with CsEIL were found to be involved in plant development, as well as responses to biotic and abiotic stress. Notably, quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that CsEIL genes were widely expressed in different organs of sweet orange and responded to both high and low temperature, NaCl treatment, and to ethylene-dependent induction of transcription, while eight additionally responded to Xanthomonas citri pv. Citri (Xcc) infection, which causes citrus canker. Among these, CsEIL2, CsEIL5 and CsEIL10 showed pronounced upregulation. Moreover, nine genes exhibited differential expression in response to Candidatus Liberibacter asiaticus (CLas) infection, which causes Citrus Huanglongbing (HLB). The genome-wide characterization and expression profile analysis of CsEIL genes provide insights into the potential functions of the CsEIL family in disease resistance.


Assuntos
Citrus sinensis , Citrus , Fatores de Transcrição/genética , Citrus sinensis/genética , Etilenos , Regulação para Cima
12.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674493

RESUMO

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal/métodos , Genoma de Planta , Genômica
13.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887233

RESUMO

Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.


Assuntos
Citrus , Tubo Polínico , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Polinização , Nicotiana/genética
14.
Biology (Basel) ; 11(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625489

RESUMO

The causal agent of mal secco disease is the fungus Plenodomus tracheiphilus, mainly affecting lemon tree survival in the Mediterranean area. Using a fully compatible host-pathogen interaction, the aim of our work was to retrieve the fungus transcriptome by an RNA seq approach during infection of rough lemon (Citrus jambhiri Lush.) to identify crucial transcripts for pathogenesis establishment and progression. A total of 2438 clusters belonging to P. tracheiphilus were retrieved and classified into the GO and KEGG categories. Transcripts were categorized mainly within the "membrane", "catalytic activity", and "primary metabolic process" GO terms. Moreover, most of the transcripts are included in the "ribosome", "carbon metabolism", and "oxidative phosphorylation" KEGG categories. By focusing our attention on transcripts with FPKM values higher than the median, we were able to identify four main transcript groups functioning in (a) fungus cell wall remodeling and protection, (b) destroying plant defensive secondary metabolites, (c) optimizing fungus development and pathogenesis, and (d) toxin biosynthesis, thus indicating that a multifaceted strategy to subdue the host was executed.

15.
FASEB J ; 36(5): e22325, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35452152

RESUMO

The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.


Assuntos
Resistência à Insulina , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Inflamação/metabolismo , Insulina/metabolismo , Lipólise , Camundongos , Camundongos Knockout , Triglicerídeos/metabolismo , Proteína Desacopladora 3/metabolismo
16.
Front Plant Sci ; 13: 835282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371165

RESUMO

To recover transgenic citrus plants in the most efficient manner, the use of selection marker genes is essential. In this work, it was shown that the mutated forms of the acetolactate synthase (ALS) gene in combination with the herbicide selection agent imazapyr (IMZ) added to the selection medium may be used to achieve this goal. This approach enables the development of cisgenic regenerants, namely, plants without the incorporation of those bacterial genes currently employed for transgenic selection, and additionally it allows the generation of edited, non-transgenic plants with altered endogenous ALS genes leading to IMZ resistance. In this work, the citrus mutants, in which ALS has been converted into IMZ-resistant forms using a base editor system, were recovered after cocultivation of the explants with Agrobacterium tumefaciens carrying a cytidine deaminase fused to nSpCas9 in the T-DNA and selecting regenerants in the culture medium supplemented with IMZ. Analysis of transgene-free plants indicated that the transient expression of the T-DNA genes was sufficient to induce ALS mutations and thus generate IMZ-resistant shoots at 11.7% frequency. To our knowledge, this is the first report of T-DNA-free edited citrus plants. Although further optimization is required to increase edition efficiency, this methodology will allow generating new citrus varieties with improved organoleptic/agronomic features without the need to use foreign genes.

17.
J Prev Med Hyg ; 62(2): E514-E519, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34604594

RESUMO

INTRODUCTION: Clostridium difficile infection (CDI) is currently considered the most common cause of health care-associated infections. The aim is to describe the trend of CDI in an Italian hospital and to assess the efficacy of the measures adopted to manage the burden. METHODS: Data were retrieved in the San Salvatore Hospital of L'Aquila, from 1 January 2016 to 31 December 2018. Incidence rate of CDIs was calculated as the number of new infected persons per 10,000 patient-days. Changes in the CDI rate during the period considered were analysed using a Joinpoint regression model and related to the preventive strategies adopted. The strategies adopted focused mainly on patient isolation, reinforcement of proper hand hygiene techniques, antimicrobial stewardship and environmental disinfection. RESULTS: CDI/10,000 patient-days was 6.27 in 2016 and increased to 7.71 in 2017, then drastically decreased to 2.76 during 2018. The Joinpoint regression analysis identified three Joinpoints: Sep-2016, Jan-2017, and Sep-2017. There was a reduction from 2016/01 to 2016/09 (slope = -1.44; p = 0.67), then there was an increase from September 2016 to February 2017 (slope = 30.01; p = 0.29), both statistically not significant. Therefore, there was an important decrement from February 2017 to September 2017, statistically significant (slope = -15.84; p = 0.012). CONCLUSIONS: Reports based on routine laboratory data can accurately measure population burden of CDI with limited surveillance resources. The adoption of multi-pronged strategies has proven effective in reducing CDI. It's important to keep attention high regarding preventive measures of CDI, also a continuous joint effort by all health professionals, caregivers and patients is needed.


Assuntos
Infecções por Clostridium , Infecção Hospitalar , Controle de Infecções/métodos , Idoso , Clostridioides difficile , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/prevenção & controle , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade
18.
PLoS One ; 16(8): e0255831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375350

RESUMO

Immature fruits from Punica granatum L. thinning are a neglected side product of pomegranate production with cumbersome disposal costs for farmers. To explore value potential of immature fruits from pomegranate 'Wonderful' cultivars, the compositional landscapes and antitumorigenic activities of pomegranate extracts from two different stages of maturation were assessed. Cancer cell proliferation and cytotoxicity was quantified in human lung H1299 and colon HCT116 adenocarcinomas by crystal violet staining, MTS assay and caspase-3 activity. High performance liquid chromatography-diode array detector (HPLC/DAD) and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC/ESI-MS) analyses indicate that immature fruits are rich sources of gallotannins and ellagitannins, with the highest amounts contained in immature fruit peels. Biological investigations reveal a robust anticancer activity by those immature P. granatum fruit extracts, which reflected induction of tumor cytotoxicity and cell death mechanisms. Together, present observations suggest P. granatum byproducts from the thinning process may provide unexplored values for virtuous circular economy.


Assuntos
Extratos Vegetais/química , Punica granatum/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Humanos , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/farmacologia , Extratos Vegetais/farmacologia , Punica granatum/química , Espectrometria de Massas por Ionização por Electrospray
19.
Elife ; 102021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152269

RESUMO

The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.


Assuntos
Regulação da Expressão Gênica , Coração/fisiologia , Filamentos Intermediários/genética , Fatores de Transcrição da Família Snail/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Miocárdio/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Plants (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067841

RESUMO

Among Citrus species, lemon is one of the most susceptible to mal secco disease, a tracheomycosis caused by the mitosporic fungus Plenodomus tracheiphilus, which induces chlorosis followed by leaf drop and progressive desiccation of twigs and branches. Severe infection can cause the death of the plant. Since no effective control strategies are available to efficiently control the pathogen spread, host tolerance is the most desirable goal in the struggle against mal secco disease. To date, both traditional breeding programs and biotechnological techniques were not efficient in developing novel varieties coupling tolerance to mal secco with optimal fruit quality. Furthermore, the genetic basis of host resistance has not been fully deciphered yet, hampering the set-up of marker-assisted selection (MAS) schemes. This paper provides an overview of the biotechnological approaches adopted so far for the selection of mal secco tolerant lemon varieties and emphasizes the promising contribution of marker-trait association analysis techniques for both unraveling the genetic determinism of the resistance to mal secco and detecting molecular markers that can be readily used for MAS. Such an approach has already proved its efficiency in several crops and could represent a valuable tool to select novel lemon varieties coupling superior fruit quality traits and resistance to mal secco.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA