Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 10: 786060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223729

RESUMO

Bats are natural reservoirs for both Alpha- and Betacoronaviruses and the hypothesized original hosts of five of seven known zoonotic coronaviruses. To date, the vast majority of bat coronavirus research has been concentrated in Asia, though coronaviruses are globally distributed; indeed, SARS-CoV and SARS-CoV-2-related Betacoronaviruses in the subgenus Sarbecovirus have been identified circulating in Rhinolophid bats in both Africa and Europe, despite the relative dearth of surveillance in these regions. As part of a long-term study examining the dynamics of potentially zoonotic viruses in three species of endemic Madagascar fruit bat (Pteropus rufus, Eidolon dupreanum, Rousettus madagascariensis), we carried out metagenomic Next Generation Sequencing (mNGS) on urine, throat, and fecal samples obtained from wild-caught individuals. We report detection of RNA derived from Betacoronavirus subgenus Nobecovirus in fecal samples from all three species and describe full genome sequences of novel Nobecoviruses in P. rufus and R. madagascariensis. Phylogenetic analysis indicates the existence of five distinct Nobecovirus clades, one of which is defined by the highly divergent ancestral sequence reported here from P. rufus bats. Madagascar Nobecoviruses derived from P. rufus and R. madagascariensis demonstrate, respectively, Asian and African phylogeographic origins, mirroring those of their fruit bat hosts. Bootscan recombination analysis indicates significant selection has taken place in the spike, nucleocapsid, and NS7 accessory protein regions of the genome for viruses derived from both bat hosts. Madagascar offers a unique phylogeographic nexus of bats and viruses with both Asian and African phylogeographic origins, providing opportunities for unprecedented mixing of viral groups and, potentially, recombination. As fruit bats are handled and consumed widely across Madagascar for subsistence, understanding the landscape of potentially zoonotic coronavirus circulation is essential for mitigation of future zoonotic threats.


Assuntos
COVID-19 , Quirópteros , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Filogenia , SARS-CoV-2
2.
J Mammal ; 103(6): 1397-1408, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36686611

RESUMO

The island nation of Madagascar is home to three endemic species of Old World fruit bat in the family Pteropodidae: Pteropus rufus, Eidolon dupreanum, and Rousettus madagascariensis, all three of which are IUCN Red Listed under some category of threat. Delineation of seasonal limits in the reproductive calendar for threatened mammals can inform conservation efforts by clarifying parameters used in population viability models, as well as elucidate understanding of the mechanisms underpinning pathogen persistence in host populations. Here, we define the seasonal limits of a staggered annual birth pulse across the three species of endemic Madagascar fruit bat, known reservoirs for viruses of high zoonotic potential. Our field studies indicate that this annual birth pulse takes place in September/October for P. rufus, November for E. dupreanum, and December for R. madagascariensis in central-eastern Madagascar where the bulk of our research was concentrated. Juvenile development periods vary across the three Malagasy pteropodids, resulting in near-synchronous weaning of pups for all species in late January-February at the height of the fruiting season for this region. We here document the size range in morphological traits for the three Malagasy fruit bat species, with P. rufus and E. dupreanum among the larger of pteropodids globally and R. madagascariensis among the smaller. All three species demonstrate subtle sexual dimorphism with males being larger than females. We explore seasonal variation in adult body condition by comparing observed body mass with body mass predicted by forearm length, demonstrating that pregnant females add weight during staggered gestation periods and males lose weight during the nutritionally deficit Malagasy winter. Finally, we quantify forearm, tibia, and ear length growth rates in juvenile bats, demonstrating both faster growth and more protracted development times for P. rufus as compared with E. dupreanum and R. madagascariensis. The longer development period for the already-threatened P. rufus further undermines the conservation status of this species as human hunting is particularly detrimental to population viability during reproductive periods. Our work highlights the importance of longitudinal field studies in collecting critical data for mammalian conservation efforts and human public health alike.

3.
Emerg Top Life Sci ; 4(4): 353-369, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33258903

RESUMO

Seven zoonoses - human infections of animal origin - have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/transmissão , Coronavirus/fisiologia , Zoonoses/virologia , Animais , Humanos
4.
Pathog Glob Health ; 114(8): 407-425, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185145

RESUMO

The emergence of SARS-CoV-2, a coronavirus with suspected bat origins, highlights a critical need for heightened understanding of the mechanisms by which bats maintain potentially zoonotic viruses at the population level and transmit these pathogens across species. We review mechanistic models, which test hypotheses of the transmission dynamics that underpin viral maintenance in bat systems. A search of the literature identified only twenty-five mechanistic models of bat-virus systems published to date, derived from twenty-three original studies. Most models focused on rabies and related lyssaviruses (eleven), followed by Ebola-like filoviruses (seven), Hendra and Nipah-like henipaviruses (five), and coronaviruses (two). The vast majority of studies has modelled bat virus transmission dynamics at the population level, though a few nested within-host models of viral pathogenesis in population-level frameworks, and one study focused on purely within-host dynamics. Population-level studies described bat virus systems from every continent but Antarctica, though most were concentrated in North America and Africa; indeed, only one simulation model with no associated data was derived from an Asian bat-virus system. In fact, of the twenty-five models identified, only ten population-level models were fitted to data - emphasizing an overall dearth of empirically derived epidemiological inference in bat virus systems. Within the data fitted subset, the vast majority of models were fitted to serological data only, highlighting extensive uncertainty in our understanding of the transmission status of a wild bat. Here, we discuss similarities and differences in the approach and findings of previously published bat virus models and make recommendations for improvement in future work.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , SARS-CoV-2/fisiologia , Zoonoses/virologia , Animais , COVID-19/transmissão , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA