Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14505-14520, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743444

RESUMO

Colloidal gold nanoparticles (AuNPs) have myriad scientific and technological applications, but their fundamental redox chemistry is underexplored. Reported here are titration studies of oxidation and reduction reactions of aqueous AuNP colloids, which show that the AuNPs bind substantial hydrogen (electrons + protons) under mild conditions. The 5 nm AuNPs are reduced to a similar extent with reductants from borohydrides to H2 and are reoxidized back essentially to their original state by oxidants, including O2. The reactions were monitored via surface plasmon resonance (SPR) optical absorption, which was shown to be much more sensitive to surface H than to changes in solution conditions. Reductions with H2 occurred without pH changes, demonstrating that hydrogenation forms surface H rather than releasing H+. Computational studies suggested that an SPR blueshift was expected for H atom addition, while just electron addition likely would have caused a redshift. Titrations consistently showed a maximum redox change of the 5 nm NPs, independent of the reagent, corresponding to 9% of the total gold or ∼30% hydrogen surface coverage (∼370 H per AuNP). Larger AuNPs showed smaller maximum fractional surface coverages. We conclude that H binds to the edge, corner, and defect sites of the AuNPs, which explains the stoichiometric limitation and the size effect. The finding of substantial and stable hydrogen on the AuNP surface under mild reducing conditions has potential implications for various applications of AuNPs in reducing environments, from catalysis to biomedicine. This finding contrasts with the behavior of bulk gold and with the typical electron-focused perspective in this field.

2.
Inorg Chem ; 61(2): 767-777, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34967207

RESUMO

Redox reactions of aqueous colloidal TiO2 4 nm nanoparticles (NPs) have been examined, including both citrate-capped and uncapped NPs (c-TiO2 and uc-TiO2). Photoreduction gave stable blue colloidal c-TiO2R NPs with 10-60 electrons per particle. Equilibration of these reduced NPs with soluble redox reagents such as methylviologen (MV2+) provided measurements of the colloid reduction potential as a function of pH. The potentials of c-TiO2 from pH 2-9 varied linearly with pH, with a slope of -60 ± 5 mV/pH. Estimates of the potential at pH 12 were consistent with extrapolating that line to high pH. The reduction potentials did not correlate with the zeta potentials (ζ) or the surface charge of the NPs across this pH range. Similar reduction potentials were observed for c- and uc-TiO2 at low pH even though they have quite different ζ potentials. These results show that the common surface-charging explanation of the pH dependence is not tenable in these systems. Oxidation of reduced c-TiO2R with the electron-transfer oxidant potassium triiodide (KI3) occurred with a significant drop in pH, showing that protons were released when the electrons were removed from the NPs. Smaller pH drops were observed for the proton-coupled electron transfer (PCET) reagents O2 (air) and 4-MeO-TEMPO (4-methoxy-2,2,6,6-tetramethylpiperine-1-oxy radical). The difference in the number of protons released with KI3 vs O2 and 4-MeO-TEMPO was roughly one proton per electron removed. Thus, the thermodynamically preferred reactivity of these colloidal TiO2 NPs is PCET over the pH 2-13 range studied. The measured redox potentials refer to the chemical process TiO2 + H+ + e- → TiO2·e-,H+; and therefore they do not correspond with an electronic energy such as a conduction band edge or flat band potential. The 1e-/1H+ stoichiometry means that the TiO2 reduction potentials correspond to a TiO2-H bond dissociation free energy (BDFE), determined to be 49 ± 2 kcal mol-1. The PCET description is consistent with the pH dependence of E(TiO2/TiO2·e-,H+), the release of protons upon oxidation, the lack of correlation with ζ potentials, the similarity of capped and uncapped NPs, and the small change in the potential and BDFE from the first to the last electron/proton pair (H atom) removed. This behavior is suggested to be the norm for redox-active oxide/water interfaces.

3.
J Phys Chem C Nanomater Interfaces ; 125(1): 680-690, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34178203

RESUMO

Electrons added to TiO2 and other semiconductors often occupy trap states, whose reactivity can determine the catalytic and stoichiometric chemistry of the material. We previously showed that reduced aqueous colloidal TiO2 nanoparticles have two distinct classes of thermally-equilibrated trapped electrons, termed Red/e - and Blue/e -. Presented here are parallel optical and electron paramagnetic resonance (EPR) kinetic studies of the reactivity of these electrons with solution-based oxidants. Optical stopped-flow measurements monitoring reactions of TiO2/e - with sub-stoichiometric oxidants showed a surprising pattern: an initial fast (seconds) decrease in TiO2/e - absorbance followed by a secondary, slow (minutes) increase in the broad TiO2/e - optical feature. Analysis revealed that the fast decrease is due to the preferential oxidation of the Red/e - trap states, and the slow increase results from re-equilibration of electrons from Blue to Red states. This kinetic model was confirmed by freeze-quench EPR measurements. Quantitative analysis of the kinetic data demonstrated that Red/e - react ~5 times faster than Blue/e - with the nitroxyl radical oxidant, 4-MeO-TEMPO. Similar reactivity patterns were also observed in oxidations of TiO2/e - by O2, which like 4-MeO-TEMPO is a proton-coupled electron transfer (PCET) oxidant, and by the pure electron transfer (ET) oxidant KI3. This suggests that the faster intrinsic reactivity of one trap state over another on the seconds-minutes timescale is likely a general feature of reduced TiO2 reactivity. This differential trap state reactivity is likely to influence the performance of TiO2 in photochemical/electrochemical devices, and it suggests an opportunity for tuning catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA