Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Front Oncol ; 12: 986305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276070

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive neoplasm with poor clinical outcome because most patients present at an advanced stage, at which point curative surgical options, such as tumor excision or liver transplantation, are not feasible. Therefore, the majority of HCC patients require systemic therapy. Nonetheless, the currently approved systemic therapies have limited effects, particularly in patients with advanced and resistant disease. Hence, there is a critical need to identify new molecular targets and effective systemic therapies to improve HCC outcome. The liver is a major target of the growth hormone receptor (GHR) signaling, and accumulating evidence suggests that GHR signaling plays an important role in HCC pathogenesis. We tested the hypothesis that GHR could represent a potential therapeutic target in this aggressive neoplasm. We measured GH levels in 767 HCC patients and 200 healthy controls, and then carried out clinicopathological correlation analyses. Moreover, specific inhibition of GHR was performed in vitro using siRNA and pegvisomant (a small peptide that blocks GHR signaling and is currently approved by the FDA to treat acromegaly) and in vivo, also using pegvisomant. GH was significantly elevated in 49.5% of HCC patients, and these patients had a more aggressive disease and poorer clinical outcome (P<0.0001). Blockade of GHR signaling with siRNA or pegvisomant induced substantial inhibitory cellular effects in vitro. In addition, pegvisomant potentiated the effects of sorafenib (P<0.01) and overcame sorafenib resistance (P<0.0001) in vivo. Mechanistically, pegvisomant decreased the phosphorylation of GHR downstream survival proteins including JAK2, STAT3, STAT5, IRS-1, AKT, ERK, and IGF-IR. In two patients with advanced-stage HCC and high GH who developed sorafenib resistance, pegvisomant caused tumor stability. Our data show that GHR signaling represents a novel "druggable" target, and pegvisomant may function as an effective systemic therapy in HCC. Our findings could also lead to testing GHR inhibition in other aggressive cancers.

3.
J Hepatocell Carcinoma ; 9: 823-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996397

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancers. It is an aggressive neoplasm with dismal outcome because most of the patients present with an advanced-stage disease, which precludes curative surgical options. Therefore, these patients require systemic therapies that typically induce small improvements in overall survival. Hence, it is crucial to identify new and promising therapeutic targets for HCC to improve the current outcome. The liver is a key organ in the signaling cascade triggered by the growth hormone receptor (GHR). Previous studies have shown that GHR signaling stimulates the proliferation and regeneration of liver cells and tissues; however, a definitive role of GHR signaling in HCC pathogenesis has not been identified. Methods: In this study, we used a direct and specific approach to analyze the role of GHR in HCC development. This approach encompasses mice with global (Ghr-/- ) or liver-specific (LiGhr-/- ) disruption of GHR expression, and the injection of diethylnitrosamine (DEN) to develop HCC in these mice. Results: Our data show that DEN induced HCC in a substantial majority of the Ghr+/+ (93.5%) and Ghr +/- (87.1%) mice but not in the Ghr-/- (5.6%) mice (P < 0.0001). Although 57.7% of LiGhr-/- mice developed HCC after injection of DEN, these mice had significantly fewer tumors than LiGhr+/+ (P < 0.001), which implies that the expression of GHR in the liver cells might increase tumor burden. Notably, the pathologic, histologic, and biochemical characteristics of DEN-induced HCC in mice resembled to a great extent human HCC, despite the fact that etiologically this model does not mimic this cancer in humans. Our data also show that the effects of DEN on mice livers were primarily related to its carcinogenic effects and ability to induce HCC, with minimal effects related to toxic effects. Conclusion: Collectively, our data support an important role of GHR in HCC development, and suggest that exploiting GHR signaling may represent a promising approach to treat HCC.

4.
Appl Immunohistochem Mol Morphol ; 30(5): 333-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35510772

RESUMO

The introduction of targeted therapy has revolutionized cancer treatment. Nonetheless, for this approach to succeed, it is crucial to identify the targets, particularly when activated, in tumor tissues. Phosphorylation is a posttranslational modification that causes activation of numerous oncogenic protein kinases and transcription regulators. Hence, phosphoproteins is a class of biomarkers that has therapeutic and prognostic implications directly relevant to cancer patients' management. Despite the progress in histopathology methodology, analysis of the expression of phosphoproteins in tumor tissues still represents a challenge owing to preanalytical and analytical factors that include antigen retrieval strategies. In this study, we tested the hypothesis that optimizing antigen retrieval methods will improve phosphoproteins unmasking and enhance their immunohistochemical staining signal. We screened 4 antigen retrieval methods by using antibodies specific for 3 oncogenic phosphoproteins to stain human lymphoma tumors that were developed in severe combined immunodeficiency mice and subsequently fixed in formalin for 2 years. Then, we used antibodies specific for 15 survival phosphoproteins to compare the most effective method identified from our screening experiment to the antigen retrieval method that is most commonly utilized. Using the antigen retrieval buffer Tris-EDTA at pH 9.0 and heating for 45 minutes at 97°C unmasked and significantly enhanced the staining of 9 of the 15 phosphoproteins (P<0.0001). Our antigen retrieval approach is cost effective and feasible for clinical and research settings. We anticipate that combining this approach with the newly proposed methods to improve tissue fixation will further improve unmasking of phosphoproteins in human and animal tissues.


Assuntos
Formaldeído , Neoplasias , Animais , Anticorpos , Antígenos/análise , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/patologia , Inclusão em Parafina , Fosfoproteínas , Fixação de Tecidos/métodos
5.
Oncotarget ; 12(8): 756-766, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889299

RESUMO

BACKGROUND: Sorafenib was the first systemic therapy approved for the treatment of Child-Turcotte-Pugh (CTP) class A patients with advanced hepatocellular carcinoma (HCC). However, there are no biomarkers to predict survival and treatment outcomes and guide HCC systemic therapy. Type 1 insulin-like growth factor (IGF-1)/CTP composite score has emerged as a potential hepatic reserve assessment tool. Our study investigated the association of the IGF/CTP score with overall survival (OS) and progression-free survival (PFS) of HCC patients treated with sorafenib. MATERIALS AND METHODS: In this prospective study, patients with HCC were treated with sorafenib and followed up until progression/death. We calculated the IGF/CTP score and used the Kaplan-Meier method and log-rank test to estimate and compare the time-to-event outcomes between patient subgroups. RESULTS: 171 patients were included, 116 of whom were CTP class A. Median PFS for IGF/CTP score AA and AB patients were 6.88 and 4.28 months, respectively (p = 0.1359). Median OS for IGF/CTP score AA and AB patients were 14.54 and 7.60 months, respectively (p = 0.1378). The PFS and OS was superior in AA patients, but the difference was not significant, likely due to the sample size. However, there was a significant difference in early OS and PFS curves between AA and AB (p = 0.0383 and p = 0.0099), respectively. CONCLUSIONS: In CTP class A patients, IGF/CTP score B was associated with shorter PFS and OS, however, study was underpowered to reach statistical significance. If validated in larger cohorts, IGF/CTP score may serve as stratification tool in clinical trials, a hepatic reserve assessment tool for HCC outcomes prediction and to assist in therapy decisions.

6.
Hepatology ; 73(6): 2278-2292, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32931023

RESUMO

BACKGROUND AND AIMS: Therapeutic, clinical trial entry and stratification decisions for hepatocellular carcinoma (HCC) are made based on prognostic assessments, using clinical staging systems based on small numbers of empirically selected variables that insufficiently account for differences in biological characteristics of individual patients' disease. APPROACH AND RESULTS: We propose an approach for constructing risk scores from circulating biomarkers that produce a global biological characterization of individual patient's disease. Plasma samples were collected prospectively from 767 patients with HCC and 200 controls, and 317 proteins were quantified in a Clinical Laboratory Improvement Amendments-certified biomarker testing laboratory. We constructed a circulating biomarker aberration score for each patient, a score between 0 and 1 that measures the degree of aberration of his or her biomarker panel relative to normal, which we call HepatoScore. We used log-rank tests to assess its ability to substratify patients within existing staging systems/prognostic factors. To enhance clinical application, we constructed a single-sample score, HepatoScore-14, which requires only a subset of 14 representative proteins encompassing the global biological effects. Patients with HCC were split into three distinct groups (low, medium, and high HepatoScore) with vastly different prognoses (medial overall survival 38.2/18.3/7.1 months; P < 0.0001). Furthermore, HepatoScore accurately substratified patients within levels of existing prognostic factors and staging systems (P < 0.0001 for nearly all), providing substantial and sometimes dramatic refinement of expected patient outcomes with strong therapeutic implications. These results were recapitulated by HepatoScore-14, rigorously validated in repeated training/test splits, concordant across Myriad RBM (Austin, TX) and enzyme-linked immunosorbent assay kits, and established as an independent prognostic factor. CONCLUSIONS: HepatoScore-14 augments existing HCC staging systems, dramatically refining patient prognostic assessments and therapeutic decision making and enrollment in clinical trials. The underlying strategy provides a global biological characterization of disease, and can be applied broadly to other disease settings and biological media.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , Índice de Gravidade de Doença , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco
7.
Oncology ; 98(12): 836-846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027788

RESUMO

BACKGROUND: Liver reserve affects survival in hepatocellular carcinoma (HCC). Model for End-Stage Liver Disease (MELD) score is used to predict overall survival (OS) and to prioritize HCC patients on the transplantation waiting list, but more accurate models are needed. We hypothesized that integrating insulin-like growth factor 1 (IGF-1) levels into MELD score (MELD-IGF-1) improves OS prediction as compared to MELD. METHODS: We measured plasma IGF-1 levels in training (n = 310) and validation (n = 155) HCC cohorts and created MELD-IGF-1 score. Cox models were used to determine the association of MELD and MELD-IGF-1 with OS. Harrell's c-index was used to compare the predictive capacity. RESULTS: IGF-1 was significantly associated with OS in both cohorts. Patients with an IGF-1 level of ≤26 ng/mL in the training cohort and in the validation cohorts had significantly higher hazard ratios than patients with the same MELD but IGF-1 >26 ng/mL. In both cohorts, MELD-IGF-1 scores had higher c-indices (0.60 and 0.66) than MELD scores (0.58 and 0.60) (p < 0.001 in both cohorts). Overall, 26% of training and 52.9% of validation cohort patients were reclassified into different risk groups by MELD-IGF-1 (p < 0.001). CONCLUSIONS: After independent validation, the MELD-IGF-1 could be used to risk-stratify patients in clinical trials and for priority assignment for patients on liver transplantation waiting list.


Assuntos
Carcinoma Hepatocelular/sangue , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/sangue , Fígado/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Feminino , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Modelos de Riscos Proporcionais , Fatores de Risco , Índice de Gravidade de Doença
8.
Front Pharmacol ; 11: 1177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903628

RESUMO

The multitude of multi-omics data generated cost-effectively using advanced high-throughput technologies has imposed challenging domain for research in Artificial Intelligence (AI). Data curation poses a significant challenge as different parameters, instruments, and sample preparations approaches are employed for generating these big data sets. AI could reduce the fuzziness and randomness in data handling and build a platform for the data ecosystem, and thus serve as the primary choice for data mining and big data analysis to make informed decisions. However, AI implication remains intricate for researchers/clinicians lacking specific training in computational tools and informatics. Cancer is a major cause of death worldwide, accounting for an estimated 9.6 million deaths in 2018. Certain cancers, such as pancreatic and gastric cancers, are detected only after they have reached their advanced stages with frequent relapses. Cancer is one of the most complex diseases affecting a range of organs with diverse disease progression mechanisms and the effectors ranging from gene-epigenetics to a wide array of metabolites. Hence a comprehensive study, including genomics, epi-genomics, transcriptomics, proteomics, and metabolomics, along with the medical/mass-spectrometry imaging, patient clinical history, treatments provided, genetics, and disease endemicity, is essential. Cancer Moonshot℠ Research Initiatives by NIH National Cancer Institute aims to collect as much information as possible from different regions of the world and make a cancer data repository. AI could play an immense role in (a) analysis of complex and heterogeneous data sets (multi-omics and/or inter-omics), (b) data integration to provide a holistic disease molecular mechanism, (c) identification of diagnostic and prognostic markers, and (d) monitor patient's response to drugs/treatments and recovery. AI enables precision disease management well beyond the prevalent disease stratification patterns, such as differential expression and supervised classification. This review highlights critical advances and challenges in omics data analysis, dealing with data variability from lab-to-lab, and data integration. We also describe methods used in data mining and AI methods to obtain robust results for precision medicine from "big" data. In the future, AI could be expanded to achieve ground-breaking progress in disease management.

9.
Cancers (Basel) ; 12(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630797

RESUMO

Background : Ten to fourteen percent of Ewing sarcoma (ES) study participants treated nationwide with IGF-1 receptor (IGF-1R)-targeted antibodies achieved tumor regression. Despite this success, low response rates and short response durations (approximately 7-weeks) have slowed the development of this therapy. Methods: We performed a meta-analysis of five phase-1b/2 ES-oriented trials that evaluated the anticancer activity of IGF-1R antibodies +/- mTOR inhibitors (mTORi). Our meta-analysis provided a head-to-head comparison of the clinical benefits of IGF-1R antibodies vs. the IGF-1R/mTOR-targeted combination. Available pretreatment clinical samples were semi-quantitatively scored using immunohistochemistry to detect proteins in the IGF-1R/PI3K/AKT/mTOR pathway linked to clinical response. Early PET/CT imaging, obtained within the first 2 weeks (median 10 days), were examined to determine if reduced FDG avidity was predictive of progression-free survival (PFS). Results: Among 56 ES patients treated at MD Anderson Cancer Center (MDACC) with IGF-1R antibodies, our analysis revealed a significant ~two-fold improvement in PFS that favored a combination of IGF-1R/mTORi therapy (1.6 vs. 3.3-months, p = 0.042). Low pIGF-1R in the pretreatment specimens was associated with treatment response. Reduced total-lesion glycolysis more accurately predicted the IGF-1R response than other previously reported radiological biomarkers. Conclusion: Synergistic drug combinations, and newly identified proteomic or radiological biomarkers of IGF-1R response, may be incorporated into future IGF-1R-related trials to improve the response rate in ES patients.

10.
Cancers (Basel) ; 12(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455989

RESUMO

Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.

11.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32349127

RESUMO

Membrane integrity at the endoplasmic reticulum (ER) is tightly regulated, and its disturbance is implicated in metabolic diseases. Using an engineered sensor that activates the unfolded protein response (UPR) exclusively when normal ER membrane lipid composition is compromised, we identified pathways beyond lipid metabolism that are necessary to maintain ER integrity in yeast and in C. elegans. To systematically validate yeast mutants that disrupt ER membrane homeostasis, we identified a lipid bilayer stress (LBS) sensor in the UPR transducer protein Ire1, located at the interface of the amphipathic and transmembrane helices. Furthermore, transcriptome and chromatin immunoprecipitation analyses pinpoint the UPR as a broad-spectrum compensatory response wherein LBS and proteotoxic stress deploy divergent transcriptional UPR programs. Together, these findings reveal the UPR program as the sum of two independent stress responses, an insight that could be exploited for future therapeutic intervention.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Bicamadas Lipídicas/química , Glicoproteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas , Animais , Técnicas Biossensoriais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/química , Cromatina/metabolismo , Retículo Endoplasmático , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Homeostase/genética , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteína Vermelha Fluorescente
12.
Clin Cancer Res ; 25(20): 6107-6118, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31363003

RESUMO

PURPOSE: Molecular profiling has been used to select patients for targeted therapy and determine prognosis. Noninvasive strategies are critical to hepatocellular carcinoma (HCC) given the challenge of obtaining liver tissue biopsies. EXPERIMENTAL DESIGN: We analyzed blood samples from 206 patients with HCC using comprehensive genomic testing (Guardant Health) of circulating tumor DNA (ctDNA). RESULTS: A total of 153/206 (74.3%) were men; median age, 62 years (range, 18-91 years). A total of 181/206 patients had ≥1 alteration. The total number of alterations was 680 (nonunique); median number of alterations/patient was three (range, 1-13); median mutant allele frequency (% cfDNA), 0.49% (range, 0.06%-55.03%). TP53 was the common altered gene [>120 alterations (non-unique)] followed by EGFR, MET, ARID1A, MYC, NF1, BRAF, and ERBB2 [20-38 alterations (nonunique)/gene]. Of the patients with alterations, 56.9% (103/181) had ≥1 actionable alterations, most commonly in MYC, EGFR, ERBB2, BRAF, CCNE1, MET, PIK3CA, ARID1A, CDK6, and KRAS. In these genes, amplifications occurred more frequently than mutations. Hepatitis B (HBV)-positive patients were more likely to have ERBB2 alterations, 35.7% (5/14) versus 8.8% HBV-negative (P = 0.04). CONCLUSIONS: This study represents the first large-scale analysis of blood-derived ctDNA in HCC in United States. The genomic distinction based on HCC risk factors and the high percentage of potentially actionable genomic alterations suggests potential clinical utility for this technology.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , DNA Tumoral Circulante/genética , Testes Genéticos/métodos , Neoplasias Hepáticas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/terapia , DNA Tumoral Circulante/sangue , Tomada de Decisão Clínica/métodos , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Seleção de Pacientes , Prognóstico , Estados Unidos , Adulto Jovem
13.
J Hematol Oncol ; 12(1): 80, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340850

RESUMO

BACKGROUND: Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T cell lymphoma is an aggressive neoplasm. NPM-ALK, an oncogenic tyrosine kinase, plays a critical role in this lymphoma. Recently, selective ALK inhibitors have emerged as a first-line therapy for this neoplasm. Unfortunately, ALK inhibitors were hindered by emergence of resistance and relapse. We have previously demonstrated that type I insulin-like growth factor receptor (IGF-IR) is commonly expressed and activated in this lymphoma. In addition, IGF-IR and NPM-ALK are physically associated and reciprocally enhance their phosphorylation/activation. Herein, we tested the hypothesis that combined inhibition of IGF-IR and NPM-ALK could significantly improve the effects of inhibiting each kinase alone. METHODS: We used clinically utilized inhibitors of IGF-IR (picropodophyllin; PPP) and ALK (ASP3026) to assess the in vitro cellular effects of combined treatment versus treatment using a single agent. Moreover, we used a systemic NPM-ALK+ T cell lymphoma mouse model to analyze the in vivo effects of PPP and ASP3026 alone or in combination. RESULTS: Our data show that combined treatment with PPP and ASP3026 decreased the viability, proliferation, and anchorage-independent colony formation, and increased apoptosis of NPM-ALK+ T cell lymphoma cells in vitro. The in vitro effects of combined treatment were synergistic and significantly more pronounced than the effects of PPP or ASP3026 alone. Biochemically, simultaneous antagonism of IGF-IR and ALK induced more pronounced decrease in pIGF-IRY1135/1136, pNPM-ALKY646, and pSTAT3Y705 levels than antagonizing IGF-IR or ALK alone. Moreover, combined targeting of IGF-IR and NPM-ALK decreased significantly systemic lymphoma tumor growth and improved mice survival in vivo. Consistent with the in vitro results, the in vivo effects of the combined therapy were more pronounced than the effects of targeting IGF-IR or ALK alone. CONCLUSIONS: Combined targeting of IGF-IR and ALK is more effective than targeting IGF-IR or ALK alone in NPM-ALK+ T cell lymphoma. This strategy might also limit emergence of resistance to high doses of ALK inhibitors. Therefore, it could represent a successful therapeutic approach to eradicate this aggressive lymphoma. Importantly, combined inhibition is feasible because of the clinical availability of IGF-IR and ALK inhibitors. Our findings are applicable to other types of cancer where IGF-IR and ALK are simultaneously expressed.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Linfoma de Células T/terapia , Receptor IGF Tipo 1/antagonistas & inibidores , Humanos , Linfoma de Células T/patologia
14.
Mol Oncol ; 11(9): 1189-1207, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28557340

RESUMO

Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+ ) T-cell lymphoma is an aggressive neoplasm that is more commonly seen in children and young adults. The pathogenesis of NPM-ALK+ T-cell lymphoma is not completely understood. Wild-type ALK is a receptor tyrosine kinase that is physiologically expressed in neural tissues during early stages of human development, which suggests that ALK may interact with neurotrophic factors. The aberrant expression of NPM-ALK results from a translocation between the ALK gene on chromosome 2p23 and the NPM gene on chromosome 5q35. The nerve growth factor (NGF) is the first neurotrophic factor attributed to non-neural functions including cancer cell survival, proliferation, and metastasis. These functions are primarily mediated through the tropomyosin receptor kinase A (TrkA). The expression and role of NGF/TrkA in NPM-ALK+ T-cell lymphoma are not known. In this study, we tested the hypothesis that TrkA signaling is upregulated and sustains the survival of this lymphoma. Our data illustrate that TrkA and NGF are expressed in five NPM-ALK+ T-cell lymphoma cell lines and TrkA is expressed in 11 of 13 primary lymphoma tumors from patients. In addition, we found evidence to support that NPM-ALK and TrkA functionally interact. A selective TrkA inhibitor induced apoptosis and decreased cell viability, proliferation, and colony formation of NPM-ALK+ T-cell lymphoma cell lines. These effects were associated with downregulation of cell survival regulatory proteins. Similar results were also observed using specific knockdown of TrkA in NPM-ALK+ T-cell lymphoma cells by siRNA. Importantly, the inhibition of TrkA signaling was associated with antitumor effects in vivo, because tumor xenografts in mice regressed and the mice exhibited improved survival. In conclusion, TrkA plays an important role in the pathogenesis of NPM-ALK+ T-cell lymphoma, and therefore, targeting TrkA signaling may represent a novel approach to eradicate this aggressive neoplasm.


Assuntos
Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Fator de Crescimento Neural/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biomed Sci ; 21: 91, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25200405

RESUMO

BACKGROUND: Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). RESULTS: We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASPRL46P and WASPRA47D (S1-WASP shRNA resistant) expressed well in JurkatWASP-KD T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of JurkatWASP-KD T cells towards SDF-1α. In addition JurkatWASP-KD T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASPRL46P and WASPRA47D) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. CONCLUSION: Thus our data suggest that missense mutations WASPRL46P or WASPRA47D affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein.


Assuntos
Quimiotaxia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Mutação de Sentido Incorreto , Proteólise , Trombocitopenia/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Substituição de Aminoácidos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Células Jurkat , Fosforilação/genética , Linfócitos T , Trombocitopenia/genética , Trombocitopenia/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética
17.
Biochim Biophys Acta ; 1843(9): 1930-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24861867

RESUMO

Skeletal muscle formation is a multistep process involving proliferation, differentiation, alignment and fusion of myoblasts to form myotubes which fuse with additional myoblast to form myofibers. Toca-1 (Transducer of Cdc42-dependent actin assembly), is an adaptor protein which activates N-WASP in conjunction with Cdc42 to facilitate membrane invagination, endocytosis and actin cytoskeleton remodeling. Expression of Toca-1 in mouse primary myoblasts and C2C12 myoblasts was up-regulated on day 1 of differentiation and subsequently down-regulated during differentiation. Knocking down Toca-1 expression in C2C12 cells (Toca-1(KD) cells) resulted in a significant decrease in myotube formation and expression of shRNA-resistant Toca-1 in Toca-1(KD) cells rescued the myogenic defect, suggesting that the knockdown was specific and Toca-1 is essential for myotube formation. Toca-1(KD) cells exhibited elongated spindle-like morphology, expressed myogenic markers (MyoD and MyHC) and localized N-Cadherin at cell periphery similar to control cells suggesting that Toca-1 is not essential for morphological changes or expression of proteins critical for differentiation. Toca-1(KD) cells displayed prominent actin fibers suggesting a defect in actin cytoskeleton turnover necessary for cell-cell fusion. Toca-1(KD) cells migrated faster than control cells and had a reduced number of vinculin patches similar to N-WASP(KO) MEF cells. Transfection of N-WASP-expressing plasmid into Toca-1(KD) cells restored myotube formation of Toca-1(KD) cells. Thus, our results suggest that Toca-1(KD) cells have defects in formation of myotubes probably due to reduced activity of actin cytoskeleton regulators such as N-WASP. This is the first study to identify and characterize the role of Toca-1 in myogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Técnicas de Silenciamento de Genes , Desenvolvimento Muscular , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Biomarcadores/metabolismo , Caderinas/metabolismo , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Proteína MyoD/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Tiazolidinas/farmacologia , Vinculina/metabolismo
18.
Exp Neurol ; 254: 29-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24462670

RESUMO

Cerebrospinal fluid (CSF) is produced by the choroid plexus and moved by multi-ciliated ependymal cells through the ventricular system of the vertebrate brain. Defects in the ependymal layer functionality are a common cause of hydrocephalus. N-WASP (Neural-Wiskott Aldrich Syndrome Protein) is a brain-enriched regulator of actin cytoskeleton and N-WASP knockout caused embryonic lethality in mice with neural tube and cardiac abnormalities. To shed light on the role of N-WASP in mouse brain development, we generated N-WASP conditional knockout mouse model N-WASP(fl/fl); Nestin-Cre (NKO-Nes). NKO-Nes mice were born with Mendelian ratios but exhibited reduced growth characteristics compared to their littermates containing functional N-WASP alleles. Importantly, all NKO-Nes mice developed cranial deformities due to excessive CSF accumulation and did not survive past weaning. Coronal brain sections of these animals revealed dilated lateral ventricles, defects in ciliogenesis, loss of ependymal layer integrity, reduced thickness of cerebral cortex and aqueductal stenosis. Immunostaining for N-cadherin suggests that ependymal integrity in NKO-Nes mice is lost as compared to normal morphology in the wild-type controls. Moreover, scanning electron microscopy and immunofluorescence analyses of coronal brain sections with anti-acetylated tubulin antibodies revealed the absence of cilia in ventricular walls of NKO-Nes mice indicative of ciliogenesis defects. N-WASP deficiency does not lead to altered expression of N-WASP regulatory proteins, Fyn and Cdc42, which have been previously implicated in hydrocephalus pathology. Taken together, our results suggest that N-WASP plays a critical role in normal brain development and implicate actin cytoskeleton regulation as a vulnerable axis frequently deregulated in hydrocephalus.


Assuntos
Citoesqueleto de Actina/metabolismo , Córtex Cerebral/anormalidades , Hidrocefalia/genética , Hidrocefalia/patologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Animais , Animais Recém-Nascidos , Aqueduto do Mesencéfalo/anormalidades , Aqueduto do Mesencéfalo/fisiologia , Córtex Cerebral/fisiologia , Ventrículos Cerebrais/anormalidades , Ventrículos Cerebrais/fisiologia , Epêndima/anormalidades , Epêndima/fisiologia , Feminino , Genes Letais , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Hidrocefalia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
19.
Biochim Biophys Acta ; 1842(4): 623-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440360

RESUMO

Wiskott-Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPR(S339Y), WASPR(P373S)) or together (WASPR(SP/YS)) did not rescue the chemotaxis defect or membrane projection defect of Jurkat(WKD) T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP-WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPR(S339Y) but not WASPR(P373S) or WASPR(SP/YS) rescued the IL-2 expression defect of Jurkat(WKD) T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASP(P373S) mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.


Assuntos
Mutação , Linfócitos T/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Proteínas de Transporte/fisiologia , Quimiotaxia de Leucócito , Humanos , Sinapses Imunológicas , Interleucina-2/genética , Células Jurkat , Ativação Linfocitária , Fosforilação , Conformação Proteica , Proteína da Síndrome de Wiskott-Aldrich/química
20.
Int J Biochem Cell Biol ; 44(6): 928-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22465711

RESUMO

Fusion of mononucleated myoblasts to generate multinucleated myotubes is a critical step in skeletal muscle development. Filopodia, the actin cytoskeleton based membrane protrusions, have been observed early during myoblast fusion, indicating that they could play a direct role in myogenic differentiation. The control of filopodia formation in myoblasts remains poorly understood. Here we show that the expression of IRSp53 (Insulin Receptor Substrate protein 53kDa), a known regulator of filopodia formation, is down-regulated during differentiation of both mouse primary myoblasts and a mouse myoblast cell line C2C12. Over-expression of IRSp53 in C2C12 cells led to induction of filopodia and decrease in cell adhesion, concomitantly with inhibition of myogenic differentiation. In contrast, knocking down the IRSp53 expression in C2C12 cells led to a small but significant increase in myotube development. The decreased cell adhesion of C2C12 cells over-expressing IRSp53 is correlated with a reduction in the number of vinculin patches in these cells. Mutations in the conserved IMD domain (IRSp53 and MIM (missing in metastasis) homology domain) or SH3 domain of IRSp53 abolished the ability of this protein to inhibit myogenic differentiation and reduce cell adhesion. Over-expression of the IMD domain alone was sufficient to decrease the cell-extracellular matrix adhesion and to inhibit myogenesis in a manner dependent on its function in membrane shaping. Based on our data, we propose that IRSp53 is a negative regulator of myogenic differentiation which correlates with the observed down regulation of IRSp53 expression during myoblast differentiation to myotubes.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos/citologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Linhagem Celular , Imunofluorescência , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA