Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Annu Rev Biomed Eng ; 24: 249-274, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35363537

RESUMO

Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy.


Assuntos
Fragmentos Fc das Imunoglobulinas , Receptores Fc , Animais , Humanos , Imunidade Inata , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Camundongos , Fagocitose , Receptores Fc/genética , Receptores Fc/imunologia
2.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947773

RESUMO

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Afinidade de Anticorpos , COVID-19/prevenção & controle , Epitopos/imunologia , Humanos , Evasão da Resposta Imune , Imunoglobulina G/sangue , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Domínios Proteicos , Proteômica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
3.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398269

RESUMO

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

4.
Mol Psychiatry ; 25(6): 1191-1201, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30804492

RESUMO

The behavioral response to antidepressants is closely associated with physiological changes in the function of neurons in the hippocampal dentate gyrus (DG). Parvalbumin interneurons are a major class of GABAergic neurons, essential for DG function, and are involved in the pathophysiology of several neuropsychiatric disorders. However, little is known about the role(s) of these neurons in major depressive disorder or in mediating the delayed behavioral response to antidepressants. Here we show, in mice, that hippocampal parvalbumin interneurons express functionally silent serotonin 5A receptors, which translocate to the cell membrane and become active upon chronic, but not acute, treatment with a selective serotonin reuptake inhibitor (SSRI). Activation of these serotonergic receptors in these neurons initiates a signaling cascade through which Gi-protein reduces cAMP levels and attenuates protein kinase A and protein phosphatase 2A activities. This results in increased phosphorylation and inhibition of Kv3.1ß channels, and thereby reduces the firing of the parvalbumin neurons. Through the loss of this signaling pathway in these neurons, conditional deletion of the serotonin 5A receptor leads to the loss of the physiological and behavioral responses to chronic antidepressants.


Assuntos
Antidepressivos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Parvalbuminas/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Feminino , Hipocampo/citologia , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos
5.
PLoS One ; 13(5): e0197029, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738555

RESUMO

Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.


Assuntos
Domínio de Fibronectina Tipo III/genética , Proteínas Ligadas por GPI/genética , Neoplasias/genética , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/genética , Antígeno Ca-125/genética , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/uso terapêutico , Humanos , Mesotelina , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Associadas à Matriz Nuclear/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA