RESUMO
Williams syndrome (WS) is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23, characterized by intellectual disability, distinctive craniofacial and dental features, and cardiovascular problems. Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes. Here, we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2, as well as one patient with a 167 kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2. To investigate the potential involvement of RFC2 in WS pathogenicity, we generate a rfc2 knockout (KO) zebrafish using CRISPR-Cas9 technology. Additionally, we generate a KO zebrafish of its paralog gene, rfc5, to better understand the functions of these RFC genes in development and disease. Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS, including small head and brain, jaw and dental defects, and vascular problems. RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish. In addition, heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion. These results suggest that RFC2 may contribute to the pathogenicity of Williams syndrome, as evidenced by the zebrafish model.
RESUMO
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Assuntos
Poliadenilação , Peixe-Zebra , Animais , Humanos , Recém-Nascido , Regiões 3' não Traduzidas , Éxons , Íntrons/genética , Peixe-Zebra/genética , Embrião não MamíferoRESUMO
A 2-month-old male patient harboring a duplication of DMD exons 1-7 classified as pathogenic by an outside institution presented with mildly elevated creatine phosphokinase (CK); molecular breakpoint analysis by our laboratory reclassified the duplication as likely benign. To date, proband continues to develop normally with decreased CK, further supporting our reclassification.
RESUMO
Prolidase deficiency is an extremely rare, autosomal recessive disorder resulting in defective collagen formation. We report a case of prolidase deficiency in a male child, highlighting the dermatologic features. Early diagnosis is important as these patients encounter significant multisystem comorbidities requiring multispecialty care.
Assuntos
Dipeptidases , Deficiência de Prolidase , Criança , Humanos , Masculino , Deficiência de Prolidase/diagnósticoRESUMO
PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
Assuntos
Blefarofimose , Hipotricose , Deficiência Intelectual , Fácies , Deformidades Congênitas do Pé , Humanos , Deficiência Intelectual/genética , Fenótipo , Fatores de Transcrição/genéticaRESUMO
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect â¼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Assuntos
Códon/genética , Estudos de Associação Genética , Mutação de Sentido Incorreto/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Adolescente , Sequência de Aminoácidos , Criança , Estudos de Coortes , Simulação por Computador , Demografia , Feminino , Heterozigoto , Humanos , Masculino , Neurofibromina 1/química , Fenótipo , Adulto JovemRESUMO
BACKGROUND: Point mutations or genomic deletions of FOXF1 result in a lethal developmental lung disease Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins. However, the clinical consequences of the constitutively increased dosage of FOXF1 are unknown. METHODS: Copy-number variations and their parental origin were identified using a combination of array CGH, long-range PCR, DNA sequencing, and microsatellite analyses. Minisatellite sequences across different species were compared using a gready clustering algorithm and genome-wide analysis of the distribution of minisatellite sequences was performed using R statistical software. RESULTS: We report four unrelated families with 16q24.1 duplications encompassing entire FOXF1. In a 4-year-old boy with speech delay and a café-au-lait macule, we identified an ~15 kb 16q24.1 duplication inherited from the reportedly healthy father, in addition to a de novo ~1.09 Mb mosaic 17q11.2 NF1 deletion. In a 13-year-old patient with autism and mood disorder, we found an ~0.3 Mb duplication harboring FOXF1 and an ~0.5 Mb 16q23.3 duplication, both inherited from the father with bipolar disorder. In a 47-year old patient with pyloric stenosis, mesenterium commune, and aplasia of the appendix, we identified an ~0.4 Mb duplication in 16q24.1 encompassing 16 genes including FOXF1. The patient transmitted the duplication to her daughter, who presented with similar symptoms. In a fourth patient with speech and motor delay, and borderline intellectual disability, we identified an ~1.7 Mb FOXF1 duplication adjacent to a large minisatellite. This duplication has a complex structure and arose de novo on the maternal chromosome, likely as a result of a DNA replication error initiated by the adjacent large tandem repeat. Using bioinformatic and array CGH analyses of the minisatellite, we found a large variation of its size in several different species and individuals, demonstrating both its evolutionarily instability and population polymorphism. CONCLUSIONS: Our data indicate that constitutional duplication of FOXF1 in humans is not associated with any pediatric lung abnormalities. We propose that patients with gut malrotation, pyloric or duodenal stenosis, and gall bladder agenesis should be tested for FOXF1 alterations. We suggest that instability of minisatellites greater than 1 kb can lead to structural variation due to DNA replication errors.
Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 16/genética , Fatores de Transcrição Forkhead/genética , Duplicação Gênica , Anormalidades Múltiplas/patologia , Adolescente , Animais , Pré-Escolar , Evolução Molecular , Feminino , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , LinhagemRESUMO
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with osseous abnormalities occurring in up to one-third of patients. Several studies have documented osteopenia in both children and adults with NF1; however, the significance of lower bone mineral density (BMD) in relationship to fracture incidence is not well elucidated in NF1, particularly in children. We undertook a retrospective study to determine prevalence and location of fractures in children and adolescents with NF1, ages 5-20 years, using a standardized questionnaire. We surveyed 256 individuals with NF1 from two multidisciplinary NF centers and 178 controls without NF1 of similar ages and sex. Participants with known long bone dysplasia (LBD) were analyzed separately. Data collected included numbers and location of fractures, dietary calcium intake, and physical activity levels. There was no difference in prevalence of ever having a fracture between the NF1 group without LBD (22%) and the control group (25%); median number of fractures also did not differ. There were significant differences in fracture location with a higher frequency of fractures of the lower extremities in NF1 individuals without LBD compared to controls. Both NF1 cohorts had lower rates of physical activity than controls (P < 0.0001). Our data demonstrate that the likelihood of having had a fracture is not higher in young NF1 individuals without LBD in comparison to healthy controls. The lower physical activity level may have a "protective effect" for those with NF1, thus keeping their fracture incidence lower than expected for their relative degree of osteopenia.
Assuntos
Fraturas Ósseas/epidemiologia , Neurofibromatose 1/epidemiologia , Adolescente , Densidade Óssea , Doenças do Desenvolvimento Ósseo/epidemiologia , Cálcio da Dieta , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Atividade Motora , Neurofibromatose 1/genética , Prevalência , Estudos Retrospectivos , Fatores de Risco , Inquéritos e Questionários , Adulto JovemRESUMO
We report on a male neonate with prenatally diagnosed mosaicism for a supernumerary marker chromosome and multiple congenital anomalies. Prenatal ultrasound imaging revealed a heart defect, pleural effusion, clubbed feet, and absent right kidney. Clinical cytogenetic analysis of amniocytes identified a marker chromosome present in 10 out of 15 cells analyzed. Clinical evaluation of the neonate revealed distinct facial features, complex heart defects, solitary left kidney, and arachnodactyly. Chromosome analysis of lymphocytes demonstrated an abnormal male karyotype with a marker chromosome present in all 24 cells examined. To identify the marker chromosome, SNP microarray analysis was performed which detected the presence of a two copy gain of 17.7 Mb of DNA from the distal long arm of chromosome 15 (15q25.2-qter). FISH analysis using a probe specific to the 15q26.3 region showed one signal on each normal 15q and two signals, one on each arm of the marker chromosome resulting in four copies. Distal tetrasomy 15q is rare. Only 11 cases have been described in the literature, all due to a supernumerary analphoid marker chromosome consisting of an inverted duplication of the distal long arm of chromosome 15. We report on a unique patient with tetrasomy 15q with complex cardiovascular malformation (CVM) involving progressive diffuse pulmonary vein stenosis (PVS). We propose overexpression of three genes, ADAMTSL3, MESP1, and MESP2 as a potential mechanism for cardiac and vessel malformations associated with tetrasomy 15q. Finally, we believe cardiac defects with this genetic syndrome are a poor prognostic finding associated with high mortality.