Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nutr ; 54(7): 1055-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25315197

RESUMO

PURPOSE: This study was conducted to investigate the effect of fish oil (FO) and krill oil (KO) supplementation on glucose tolerance in obese New Zealand white rabbits. METHODS: The experiments were carried out with 24 male rabbits randomly divided into four groups: KO-castrated, treated with KO; FO-castrated, treated with FO; C-castrated, non-treated; NC-non-castrated, non-treated. At the end of treatment period (2 months), an intravenous glucose tolerance test (IVGTT) was performed in all rabbits. RESULTS: Fasting blood glucose concentrations in FO and KO animals were significantly lower than in group C. The blood glucose concentrations in FO- and KO-treated animals returned to initial values after 30 and 60 min of IVGTT, respectively. In liver, carnitine palmitoyltransferase 2 (Cpt2) and 3-hydroxy-3-methyl-glutaryl-CoA synthase 2 (Hmgcs2) genes were significantly increased in FO-fed rabbits compared with the C group. Acetyl-CoA carboxylase alpha (Acaca) expression was significantly reduced in both KO- and FO-fed rabbits. In skeletal muscle, Hmgcs2 and Cd36 were significantly higher in KO-fed rabbits compared with the C group. Acaca expression was significantly lower in KO- and FO-fed rabbits compared with the C group. CONCLUSION: The present results indicate that FO and KO supplementation decreases fasting blood glucose and improves glucose tolerance in obese New Zealand white rabbits. This could be ascribed to the ameliorated insulin sensitivity and insulin secretion and modified gene expressions of some key enzymes involved in ß-oxidation and lipogenesis in liver and skeletal muscle.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Obesidade/sangue , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Glicemia/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Euphausiacea , Peixes , Regulação da Expressão Gênica , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Coelhos
2.
Res Vet Sci ; 90(2): 196-204, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20542306

RESUMO

Molecular mechanisms, responsible for the impaired insulin-sensitivity state due to the obesity are not fully understood in both humans and animals. The purpose of this study was to investigate the effects of castration-induced visceral obesity and the influence of two antioxidants on constituents of blood lipid profile and insulin sensitivity in New Zealand white rabbits. Twenty-six clinically healthy male New Zealand white rabbits were used in the experiment and were divided into 3 groups: first group (CI, n=7) - castrated-obese and treated with antioxidants "Immunoprotect" for 2months; second group (CO, n=7) - castrated-obese; third group (NC, n=12) - control group (non-castrated, non-obese). At the end of the follow-up period of 2months after castration an intravenous glucose tolerance test (IVGTT) was performed after a 12-h fasting period as the blood samples for determination of glucose and insulin and their kinetic parameters were obtained at 5 and 0min before and at 5, 10, 30, 60 and 120min after the infusion of the glucose. The constituents of lipid profile, triglycerides (TG), total cholesterol (TC) and HDL-cholesterol (HDL-C) were also assessed in the overnight fasting blood samples. The body weight (BW), body mass index (BMI), amount of the visceral fat (VF) and VF/BW ratio were both measured and calculated before the IVGTT and at the end of the experimental period. All measured markers of obesity (BW, BMI, VF, VF/BW) were significantly higher in both groups of castrated rabbits than in the control group. Apart HDL-C, the plasma concentrations of all constituents of lipid profile (TG, TC, HDL-C) were the highest in CO group. There were generally no differences between CI and NC groups for the same traits. After glucose injection blood glucose concentrations and glucose and insulin kinetic parameters were considerably higher (except of glucose elimination rate) in CO rabbits than in NC ones. Castrated rabbits treated with "Immunoprotect" showed lower fasting plasma insulin and improved glucose kinetics dynamics than CO rabbits, but commensurable values of glucose and insulin kinetics parameters than NC group. The results of the current study clearly indicated that castration-induced visceral obesity affected negatively the lipid profile and insulin sensitivity and/or responsiveness. Treatment with antioxidant supplementation, consisted of d-limonene and vitamin E, improved blood lipid profile, fatty liver, glucose homeostasis and insulin sensitivity in obese rabbits. In addition, based on our results we may suggest that castrated male New Zealand white rabbits might be considered as an appropriate animal model to study various metabolic abnormalities related to visceral obesity, such as dyslipidemia and impaired insulin sensitivity.


Assuntos
Antioxidantes/farmacologia , Resistência à Insulina/fisiologia , Lipídeos/sangue , Orquiectomia/veterinária , Animais , Área Sob a Curva , Glicemia , Glucose/metabolismo , Glucose/farmacocinética , Teste de Tolerância a Glucose , Meia-Vida , Insulina/metabolismo , Masculino , Obesidade , Orquiectomia/efeitos adversos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA