Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Appl ; 11(9): 1554-1566, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344627

RESUMO

The recent increase in river restoration projects is altering habitat connectivity for many aquatic species, increasing the chance that previously isolated populations will come into secondary contact. Anadromous and landlocked alewife (Alosa pseudoharengus) are currently undergoing secondary contact as a result of a fishway installation at Rogers Lake in Old Lyme, Connecticut. To determine the degree of prezygotic isolation and potential for hybridization between alewife life history forms, we constructed spawning time distributions for two anadromous and three landlocked alewife populations using otolith-derived age estimates. In addition, we analyzed long-term data from anadromous alewife migratory spawning runs to look for trends in arrival date and spawning time. Our results indicated that anadromous alewife spawned earlier and over a shorter duration than landlocked alewife, but 3%-13% of landlocked alewife spawning overlapped with the anadromous alewife spawning period. The degree of spawning time overlap was primarily driven by annual and population-level variation in the timing of spawning by landlocked alewife, whereas the timing and duration of spawning for anadromous alewife were found to be relatively invariant among years in our study system. For alewife and many other anadromous fish species, the increase in fish passage river restoration projects in the coming decades will re-establish habitat connectivity and may bring isolated populations into contact. Hybridization between life history forms may occur when prezygotic isolating mechanisms are minimal, leading to potentially rapid ecological and evolutionary changes in restored habitats.

2.
Evol Appl ; 7(2): 212-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24567743

RESUMO

A major challenge in conservation biology is the need to broadly prioritize conservation efforts when demographic data are limited. One method to address this challenge is to use population genetic data to define groups of populations linked by migration and then use demographic information from monitored populations to draw inferences about the status of unmonitored populations within those groups. We applied this method to anadromous alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), species for which long-term demographic data are limited. Recent decades have seen dramatic declines in these species, which are an important ecological component of coastal ecosystems and once represented an important fishery resource. Results show that most populations comprise genetically distinguishable units, which are nested geographically within genetically distinct clusters or stocks. We identified three distinct stocks in alewife and four stocks in blueback herring. Analysis of available time series data for spawning adult abundance and body size indicate declines across the US ranges of both species, with the most severe declines having occurred for populations belonging to the Southern New England and the Mid-Atlantic Stocks. While all alewife and blueback herring populations deserve conservation attention, those belonging to these genetic stocks warrant the highest conservation prioritization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA