Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Rep ; 13(1): 13076, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567908

RESUMO

Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n = 145), ILD (n = 144) and controls (n = 64). Five distinct subclusters of samples were identified including 1 COPD-predominant cluster and 2 ILD-predominant clusters which associated with different clinical measurements of disease severity. Utilizing 262 samples with gene expression and SNP microarrays, we built disease-specific genetic and expression networks to predict key miRNA regulators of gene expression. Members of miR-449/34 family, known to promote airway differentiation by repressing the Notch pathway, were among the top connected miRNAs in both COPD and ILD networks. Genes associated with miR-449/34 members in the disease networks were enriched among genes that increase in expression with airway differentiation at an air-liquid interface. A highly expressed isomiR containing a novel seed sequence was identified at the miR-34c-5p locus. 47% of the anticorrelated predicted targets for this isomiR were distinct from the canonical seed sequence for miR-34c-5p. Overexpression of the canonical miR-34c-5p and the miR-34c-5p isomiR with an alternative seed sequence down-regulated NOTCH1 and NOTCH4. However, only overexpression of the isomiR down-regulated genes involved in Ras signaling such as CRKL and GRB2. Overall, these findings elucidate molecular heterogeneity inherent across COPD and ILD patients and further suggest roles for miR-34c in regulating disease-associated gene-expression.


Assuntos
Doenças Pulmonares Intersticiais , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/metabolismo , Genômica
2.
Circulation ; 148(5): 381-390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356038

RESUMO

BACKGROUND: COVID-19 has been associated with endothelial injury, resultant microvascular inflammation and thrombosis. Activated endothelial cells release and express P-selectin and von Willebrand factor, both of which are elevated in severe COVID-19 and may be implicated in the disease pathophysiology. We hypothesized that crizanlizumab, a humanized monoclonal antibody to P-selectin, would reduce morbidity and death in patients hospitalized for COVID-19. METHODS: An international, adaptive, randomized controlled platform trial, funded by the National Heart, Lung, and Blood Institute, randomly assigned 422 patients hospitalized with COVID-19 with moderate or severe illness to receive either a single infusion of the P-selectin inhibitor crizanlizumab (at a dose of 5 mg/kg) plus standard of care or standard of care alone in an open-label 1:1 ratio. The primary outcome was organ support-free days, evaluated on an ordinal scale consisting of the number of days alive free of organ support through the first 21 days after trial entry. RESULTS: The study was stopped for futility by the data safety monitoring committee. Among 421 randomized patients with known 21-day outcomes, 163 patients (77%) randomized to the crizanlizumab plus standard-of-care arm did not require any respiratory or cardiovascular organ support compared with 169 (80%) in the standard-of-care-alone arm. The adjusted odds ratio for the effect of crizanlizumab on organ support-free days was 0.70 (95% CI, 0.43-1.16), where an odds ratio >1 indicates treatment benefit, yielding a posterior probability of futility (odds ratio <1.2) of 98% and a posterior probability of inferiority (odds ratio <1.0) of 91%. Overall, there were 37 deaths (17.5%) in the crizanlizumab arm and 27 deaths (12.8%) in the standard-of-care arm (hazard ratio, 1.33 [95% CrI, 0.85-2.21]; [probability of hazard ratio>1] = 0.879). CONCLUSIONS: Crizanlizumab, a P-selectin inhibitor, did not result in improvement in organ support-free days in patients hospitalized with COVID-19. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04505774.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Selectina-P , Células Endoteliais , Resultado do Tratamento
3.
JAMA Netw Open ; 6(5): e2314428, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227729

RESUMO

Importance: Platelet activation is a potential therapeutic target in patients with COVID-19. Objective: To evaluate the effect of P2Y12 inhibition among critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: This international, open-label, adaptive platform, 1:1 randomized clinical trial included critically ill (requiring intensive care-level support) patients hospitalized with COVID-19. Patients were enrolled between February 26, 2021, through June 22, 2022. Enrollment was discontinued on June 22, 2022, by the trial leadership in coordination with the study sponsor given a marked slowing of the enrollment rate of critically ill patients. Intervention: Participants were randomly assigned to receive a P2Y12 inhibitor or no P2Y12 inhibitor (usual care) for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death and, for participants who survived to hospital discharge, the number of days free of cardiovascular or respiratory organ support up to day 21 of the index hospitalization. The primary safety outcome was major bleeding, as defined by the International Society on Thrombosis and Hemostasis. Results: At the time of trial termination, 949 participants (median [IQR] age, 56 [46-65] years; 603 male [63.5%]) had been randomly assigned, 479 to the P2Y12 inhibitor group and 470 to usual care. In the P2Y12 inhibitor group, ticagrelor was used in 372 participants (78.8%) and clopidogrel in 100 participants (21.2%). The estimated adjusted odds ratio (AOR) for the effect of P2Y12 inhibitor on organ support-free days was 1.07 (95% credible interval, 0.85-1.33). The posterior probability of superiority (defined as an OR > 1.0) was 72.9%. Overall, 354 participants (74.5%) in the P2Y12 inhibitor group and 339 participants (72.4%) in the usual care group survived to hospital discharge (median AOR, 1.15; 95% credible interval, 0.84-1.55; posterior probability of superiority, 80.8%). Major bleeding occurred in 13 participants (2.7%) in the P2Y12 inhibitor group and 13 (2.8%) in the usual care group. The estimated mortality rate at 90 days for the P2Y12 inhibitor group was 25.5% and for the usual care group was 27.0% (adjusted hazard ratio, 0.96; 95% CI, 0.76-1.23; P = .77). Conclusions and Relevance: In this randomized clinical trial of critically ill participants hospitalized for COVID-19, treatment with a P2Y12 inhibitor did not improve the number of days alive and free of cardiovascular or respiratory organ support. The use of the P2Y12 inhibitor did not increase major bleeding compared with usual care. These data do not support routine use of a P2Y12 inhibitor in critically ill patients hospitalized for COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Assuntos
COVID-19 , Agonistas do Receptor Purinérgico P2Y , Humanos , Masculino , Pessoa de Meia-Idade , Estado Terminal/terapia , Hemorragia , Mortalidade Hospitalar , Ticagrelor/uso terapêutico , Agonistas do Receptor Purinérgico P2Y/uso terapêutico
4.
Ann Intern Med ; 176(4): 515-523, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940444

RESUMO

BACKGROUND: Patients hospitalized with COVID-19 have an increased incidence of thromboembolism. The role of extended thromboprophylaxis after hospital discharge is unclear. OBJECTIVE: To determine whether anticoagulation is superior to placebo in reducing death and thromboembolic complications among patients discharged after COVID-19 hospitalization. DESIGN: Prospective, randomized, double-blind, placebo-controlled clinical trial. (ClinicalTrials.gov: NCT04650087). SETTING: Done during 2021 to 2022 among 127 U.S. hospitals. PARTICIPANTS: Adults aged 18 years or older hospitalized with COVID-19 for 48 hours or more and ready for discharge, excluding those with a requirement for, or contraindication to, anticoagulation. INTERVENTION: 2.5 mg of apixaban versus placebo twice daily for 30 days. MEASUREMENTS: The primary efficacy end point was a 30-day composite of death, arterial thromboembolism, and venous thromboembolism. The primary safety end points were 30-day major bleeding and clinically relevant nonmajor bleeding. RESULTS: Enrollment was terminated early, after 1217 participants were randomly assigned, because of a lower than anticipated event rate and a declining rate of COVID-19 hospitalizations. Median age was 54 years, 50.4% were women, 26.5% were Black, and 16.7% were Hispanic; 30.7% had a World Health Organization severity score of 5 or greater, and 11.0% had an International Medical Prevention Registry on Venous Thromboembolism risk prediction score of greater than 4. Incidence of the primary end point was 2.13% (95% CI, 1.14 to 3.62) in the apixaban group and 2.31% (CI, 1.27 to 3.84) in the placebo group. Major bleeding occurred in 2 (0.4%) and 1 (0.2%) and clinically relevant nonmajor bleeding occurred in 3 (0.6%) and 6 (1.1%) apixaban-treated and placebo-treated participants, respectively. By day 30, thirty-six (3.0%) participants were lost to follow-up, and 8.5% of apixaban and 11.9% of placebo participants permanently discontinued the study drug treatment. LIMITATIONS: The introduction of SARS-CoV-2 vaccines decreased the risk for hospitalization and death. Study enrollment spanned the peaks of the Delta and Omicron variants in the United States, which influenced illness severity. CONCLUSION: The incidence of death or thromboembolism was low in this cohort of patients discharged after hospitalization with COVID-19. Because of early enrollment termination, the results were imprecise and the study was inconclusive. PRIMARY FUNDING SOURCE: National Institutes of Health.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hemorragia , Tromboembolia Venosa , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticoagulantes/efeitos adversos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Hemorragia/induzido quimicamente , Hospitalização , Estudos Prospectivos , SARS-CoV-2 , Resultado do Tratamento , Tromboembolia Venosa/tratamento farmacológico
5.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36712057

RESUMO

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

6.
J Am Coll Cardiol ; 80(7): 697-718, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35953136

RESUMO

BACKGROUND: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. OBJECTIVES: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. METHODS: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. RESULTS: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. CONCLUSIONS: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification. (Pulmonary Vascular Disease Phenomics Program PVDOMICS [PVDOMICS]; NCT02980887).


Assuntos
Hipertensão Pulmonar , Doenças Vasculares , Monóxido de Carbono , Estudos Transversais , Humanos , Hipertensão Pulmonar/etiologia , Circulação Pulmonar , Doenças Vasculares/complicações , Doenças Vasculares/diagnóstico , Doenças Vasculares/cirurgia
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769463

RESUMO

Defining detailed genomic characterization of early tumor progression is critical to identifying key regulators and pathways in carcinogenesis as potentially druggable targets. In human lung cancer, work to characterize early cancer development has mainly focused on squamous cancer, as the earliest lesions are more proximal in the airways and often accessible by repeated bronchoscopy. Adenocarcinomas are typically located distally in the lung, limiting accessibility for biopsy of pre-malignant and early stages. Mouse lung cancer models recapitulate many human genomic features and provide a model for tumorigenesis with pre-malignant atypical adenomatous hyperplasia and in situ adenocarcinomas often developing contemporaneously within the same animal. Here, we combined tissue characterization and collection by laser capture microscopy (LCM) with digital droplet PCR (ddPCR) and low-coverage whole genome sequencing (LC-WGS). ddPCR can be used to identify specific missense mutations in Kras (Kirsten rat sarcoma viral oncogene homolog, here focused on Kras Q61) and estimate the percentage of mutation predominance. LC-WGS is a cost-effective method to infer localized copy number alterations (CNAs) across the genome using low-input DNA. Combining these methods, the histological stage of lung cancer can be correlated with appearance of Kras mutations and CNAs. The utility of this approach is adaptable to other mouse models of human cancer.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Microdissecção e Captura a Laser/métodos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Reação em Cadeia da Polimerase/métodos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Sequenciamento Completo do Genoma/métodos
8.
J Am Coll Cardiol ; 77(16): 2040-2052, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888254

RESUMO

The National Heart, Lung, and Blood Institute and the Cardiovascular Medical Research and Education Fund held a workshop on the application of pulmonary vascular disease omics data to the understanding, prevention, and treatment of pulmonary vascular disease. Experts in pulmonary vascular disease, omics, and data analytics met to identify knowledge gaps and formulate ideas for future research priorities in pulmonary vascular disease in line with National Heart, Lung, and Blood Institute Strategic Vision goals. The group identified opportunities to develop analytic approaches to multiomic datasets, to identify molecular pathways in pulmonary vascular disease pathobiology, and to link novel phenotypes to meaningful clinical outcomes. The committee suggested support for interdisciplinary research teams to develop and validate analytic methods, a national effort to coordinate biosamples and data, a consortium of preclinical investigators to expedite target evaluation and drug development, longitudinal assessment of molecular biomarkers in clinical trials, and a task force to develop a master clinical trials protocol for pulmonary vascular disease.


Assuntos
Pesquisa Biomédica/tendências , Educação/tendências , Pneumopatias/classificação , National Heart, Lung, and Blood Institute (U.S.)/tendências , Relatório de Pesquisa/tendências , Doenças Vasculares/classificação , Doenças Cardiovasculares/classificação , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Biologia Computacional/métodos , Biologia Computacional/tendências , Humanos , Pneumopatias/diagnóstico , Pneumopatias/epidemiologia , Circulação Pulmonar/fisiologia , Literatura de Revisão como Assunto , Estados Unidos/epidemiologia , Doenças Vasculares/diagnóstico , Doenças Vasculares/epidemiologia
10.
Nicotine Tob Res ; 23(1): 57-62, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31407779

RESUMO

INTRODUCTION: Despite knowledge about major health effects of secondhand tobacco smoke (SHS) exposure, systematic incorporation of SHS screening and counseling in clinical settings has not occurred. METHODS: A three-round modified Delphi Panel of tobacco control experts was convened to build consensus on the screening questions that should be asked and identify opportunities and barriers to SHS exposure screening and counseling. The panel considered four questions: (1) what questions should be asked about SHS exposure; (2) what are the top priorities to advance the goal of ensuring that these questions are asked; (3) what are the barriers to achieving these goals; and (4) how might these barriers be overcome. Each panel member submitted answers to the questions. Responses were summarized and successive rounds were reviewed by panel members for consolidation and prioritization. RESULTS: Panelists agreed that both adults and children should be screened during clinical encounters by asking if they are exposed or have ever been exposed to smoke from any tobacco products in their usual environment. The panel found that consistent clinician training, quality measurement or other accountability, and policy and electronic health records interventions were needed to successfully implement consistent screening. CONCLUSIONS: The panel successfully generated screening questions and identified priorities to improve SHS exposure screening. Policy interventions and stakeholder engagement are needed to overcome barriers to implementing effective SHS screening. IMPLICATIONS: In a modified Delphi panel, tobacco control and clinical prevention experts agreed that all adults and children should be screened during clinical encounters by asking if they are exposed or have ever been exposed to smoke from tobacco products. Consistent training, accountability, and policy and electronic health records interventions are needed to implement consistent screening. Increasing SHS screening will have a significant impact on public health and costs.


Assuntos
Aconselhamento/métodos , Exposição Ambiental/análise , Política Antifumo/legislação & jurisprudência , Poluição por Fumaça de Tabaco/prevenção & controle , Adulto , Criança , Humanos
11.
Pulm Circ ; 10(4): 2045894020968531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343881

RESUMO

Using RNAseq, we identified a 61 gene-based circulating transcriptomic profile most correlated with four indices of pulmonary arterial hypertension severity. In an independent dataset, 13/61 (21%) genes were differentially expressed in lung tissues of pulmonary arterial hypertension cases versus controls, highlighting potentially novel candidate genes involved in pulmonary arterial hypertension development.

12.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L456-L470, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639867

RESUMO

Mechanisms driving adaptive developmental responses to chronic high-altitude (HA) exposure are incompletely known. We developed a novel rat model mimicking the human condition of cardiopulmonary adaptation to HA starting at conception and spanning the in utero and postnatal timeframe. We assessed lung growth and cardiopulmonary structure and function and performed transcriptome analyses to identify mechanisms facilitating developmental adaptations to chronic hypoxia. To generate the model, breeding pairs of Sprague-Dawley rats were exposed to hypobaric hypoxia (equivalent to 9,000 ft elevation). Mating, pregnancy, and delivery occurred in hypoxic conditions. Six weeks postpartum, structural and functional data were collected in the offspring. RNA-Seq was performed on right ventricle (RV) and lung tissue. Age-matched breeding pairs and offspring under room air (RA) conditions served as controls. Hypoxic rats exhibited significantly lower body weights and higher hematocrit levels, alveolar volumes, pulmonary diffusion capacities, RV mass, and RV systolic pressure, as well as increased pulmonary artery remodeling. RNA-Seq analyses revealed multiple differentially expressed genes in lungs and RVs from hypoxic rats. Although there was considerable similarity between hypoxic lungs and RVs compared with RA controls, several upstream regulators unique to lung or RV were identified. We noted a pattern of immune downregulation and regulation patterns of immune and hormonal mediators similar to the genome from patients with pulmonary arterial hypertension. In summary, we developed a novel murine model of chronic hypoxia exposure that demonstrates functional and structural phenotypes similar to human adaptation. We identified transcriptomic alterations that suggest potential mechanisms for adaptation to chronic HA.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Transcriptoma/fisiologia , Animais , Modelos Animais de Doenças , Pulmão/fisiopatologia , Ratos Sprague-Dawley , Remodelação Vascular/fisiologia
13.
Transpl Immunol ; 56: 101224, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325493

RESUMO

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early mortality after lung transplantation. Anti-collagen type-V (col(V)) immunity has been observed in animal models of ischemia-reperfusion injury (IRI) and in PGD. We hypothesized that collagen type-V is an innate danger signal contributing to PGD pathogenesis. METHODS: Anti-col(V) antibody production was detected by flow cytometric assay following cultures of murine CD19+ splenic cells with col.(V). Responding murine B cells were phenotyped using surface markers. RNA-Seq analysis was performed on murine CD19+ cells. Levels of anti-col(V) antibodies were measured in 188 recipients from the Lung Transplant Outcomes Group (LTOG) after transplantation. RESULTS: Col(V) induced rapid production of anti-col(V) antibodies from murine CD19+ B cells. Subtype analysis demonstrated innate B-1 B cells bound col.(V). Col(V) induced a specific transcriptional signature in CD19+ B cells with similarities to, yet distinct from, B cell receptor (BCR) stimulation. Rapid de novo production of anti-col(V) Abs was associated with an increased incidence of clinical PGD after lung transplant. CONCLUSIONS: This study demonstrated that col.(V) is an rapidly recognized by B cells and has specific transcriptional signature. In lung transplants recipients the rapid seroconversion to anti-col(V) Ab is linked to increased risk of grade 3 PGD.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Colágeno Tipo V/imunologia , Rejeição de Enxerto/imunologia , Transplante de Pulmão , Adulto , Idoso , Animais , Formação de Anticorpos , Antígenos CD19/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transcriptoma
14.
Cancer Prev Res (Phila) ; 12(10): 721-730, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308004

RESUMO

Lung cancer chemoprevention, especially in high-risk former smokers, has great potential to reduce lung cancer incidence and mortality. Thiazolidinediones prevent lung cancer in preclinical studies, and diabetics receiving thiazolidinediones have lower lung cancer rates which led to our double-blind, randomized, phase II placebo-controlled trial of oral pioglitazone in high-risk current or former smokers with sputum cytologic atypia or known endobronchial dysplasia. Bronchoscopy was performed at study entry and after completing 6 months of treatment. Biopsies were histologically scored, and primary endpoint analysis tested worst biopsy scores (Max) between groups; Dysplasia index (DI) and average score (Avg) changes were secondary endpoints. Biopsies also received an inflammation score. The trial accrued 92 subjects (47 pioglitazone, 45 placebo), and 76 completed both bronchoscopies (39 pioglitazone, 37 placebo). Baseline dysplasia was significantly worse for current smokers, and 64% of subjects had mild or greater dysplasia at study entry. Subjects receiving pioglitazone did not exhibit improvement in bronchial dysplasia. Former smokers treated with pioglitazone exhibited a slight improvement in Max, while current smokers exhibited slight worsening. While statistically significant changes in Avg and DI were not observed in the treatment group, former smokers exhibited a slight decrease in both Avg and DI. Negligible Avg and DI changes occurred in current smokers. A trend toward decreased Ki-67 labeling index occurred in former smokers with baseline dysplasia receiving pioglitazone. While pioglitazone did not improve endobronchial histology in this high-risk cohort, specific lesions showed histologic improvement, and further study is needed to better characterize responsive dysplasia.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Carcinoma in Situ/prevenção & controle , Quimioprevenção/métodos , Neoplasias Pulmonares/prevenção & controle , Pioglitazona/uso terapêutico , Fumar/efeitos adversos , Fumar/tratamento farmacológico , Idoso , Biópsia , Displasia Broncopulmonar/patologia , Broncoscopia , Carcinoma in Situ/patologia , Método Duplo-Cego , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Placebos , Indução de Remissão , Fatores de Risco , Fumantes , Abandono do Hábito de Fumar/estatística & dados numéricos , Escarro/citologia , Escarro/efeitos dos fármacos
15.
Am J Respir Cell Mol Biol ; 61(4): 512-524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30951642

RESUMO

Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are causally linked to pulmonary arterial hypertension (PAH) pathogenesis. Carbonic anhydrase inhibition induces mild metabolic acidosis and exerts protective effects in hypoxic pulmonary hypertension. Carbonic anhydrases and metabolic acidosis are further known to modulate immune cell activation. To evaluate if carbonic anhydrase inhibition modulates macrophage activation, inflammation, and VSMC phenotypic switching in severe experimental pulmonary hypertension, pulmonary hypertension was assessed in Sugen 5416/hypoxia (SU/Hx) rats after treatment with acetazolamide or ammonium chloride (NH4Cl). We evaluated pulmonary and systemic inflammation and characterized the effect of carbonic anhydrase inhibition and metabolic acidosis in alveolar macrophages and bone marrow-derived macrophages (BMDMs). We further evaluated the treatment effects on VSMC phenotypic switching in pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs) and corroborated some of our findings in lungs and pulmonary arteries of patients with PAH. Both patients with idiopathic PAH and SU/Hx rats had increased expression of lung inflammatory markers and signs of PASMC dedifferentiation in pulmonary arteries. Acetazolamide and NH4Cl ameliorated SU/Hx-induced pulmonary hypertension and blunted pulmonary and systemic inflammation. Expression of carbonic anhydrase isoform 2 was increased in alveolar macrophages from SU/Hx animals, classically (M1) and alternatively (M2) activated BMDMs, and lungs of patients with PAH. Carbonic anhydrase inhibition and acidosis had distinct effects on M1 and M2 markers in BMDMs. Inflammatory cytokines drove PASMC dedifferentiation, and this was inhibited by acetazolamide and acidosis. The protective antiinflammatory effect of acetazolamide in pulmonary hypertension is mediated by a dual mechanism of macrophage carbonic anhydrase inhibition and systemic metabolic acidosis.


Assuntos
Acetazolamida/uso terapêutico , Cloreto de Amônio/uso terapêutico , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Acidose/induzido quimicamente , Acidose/complicações , Acidose/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proteínas Contráteis/biossíntese , Proteínas Contráteis/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/enzimologia , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Isoformas de Proteínas/antagonistas & inibidores , Artéria Pulmonar/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
17.
Am J Respir Cell Mol Biol ; 60(6): 637-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30562042

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary artery pressure and vascular resistance, typically leading to right heart failure and death. Current therapies improve quality of life of the patients but have a modest effect on long-term survival. A detailed transcriptomics and systems biology view of the PAH lung is expected to provide new testable hypotheses for exploring novel treatments. We completed transcriptomics analysis of PAH and control lung tissue to develop disease-specific and clinical data/tissue pathology gene expression classifiers from expression datasets. Gene expression data were integrated into pathway analyses. Gene expression microarray data were collected from 58 PAH and 25 control lung tissues. The strength of the dataset and its derived disease classifier was validated using multiple approaches. Pathways and upstream regulators analyses was completed with standard and novel graphical approaches. The PAH lung dataset identified expression patterns specific to PAH subtypes, clinical parameters, and lung pathology variables. Pathway analyses indicate the important global role of TNF and transforming growth factor signaling pathways. In addition, novel upstream regulators and insight into the cellular and innate immune responses driving PAH were identified. Finally, WNT-signaling pathways may be a major determinant underlying the observed sex differences in PAH. This study provides a transcriptional framework for the PAH-diseased lung, supported by previously reported findings, and will be a valuable resource to the PAH research community. Our investigation revealed novel potential targets and pathways amenable to further study in a variety of experimental systems.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/genética , Análise de Sistemas , Transcriptoma/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Hipertensão Arterial Pulmonar/patologia , Caracteres Sexuais , Transdução de Sinais/genética , Adulto Jovem
18.
Trans Am Clin Climatol Assoc ; 129: 48-55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30166698

RESUMO

Lung cancer remains an important target of cancer research, and accounts for most deaths of any cancer type in the United States. Chemoprevention refers to the use of agents to prevent the development of cancer in high-risk populations, often in patients with predisposing lesions. In the following, we describe our ongoing work examining the role of the eicosanoid prostacyclin in lung cancer chemoprevention. Our findings include the fact that most adenocarcinomas lose the expression of prostacyclin synthase through methylation silencing. In addition, transgenic mice with overexpression of prostacyclin synthase are protected from tumorigenesis in multiple preclinical lung cancer models. Our phase IIb clinical trial using iloprost, a prostacyclin analogue, showed the reversal of airway dysplasia in high-risk individuals. This trial represents the first to show regression of airway dysplasia from the administration of a chemoprevention agent and forms the basis for future trials in lung cancer chemoprevention.


Assuntos
Adenocarcinoma de Pulmão/prevenção & controle , Anticarcinógenos/uso terapêutico , Transformação Celular Neoplásica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Iloprosta/uso terapêutico , Oxirredutases Intramoleculares/metabolismo , Neoplasias Pulmonares/prevenção & controle , PPAR gama/agonistas , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ensaios Clínicos Fase II como Assunto , Sistema Enzimático do Citocromo P-450/genética , Humanos , Oxirredutases Intramoleculares/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Mutação , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Acad Med ; 93(4): 565-573, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28991849

RESUMO

The U.S. physician-scientist (PS) workforce is invaluable to the nation's biomedical research effort. It is through biomedical research that certain diseases have been eliminated, cures for others have been discovered, and medical procedures and therapies that save lives have been developed. Yet, the U.S. PS workforce has both declined and aged over the last several years. The resulting decreased inflow and outflow to the PS pipeline renders the system vulnerable to collapsing suddenly as the senior workforce retires. In November 2015, the Alliance for Academic Internal Medicine hosted a consensus conference on the PS workforce to address issues impacting academic medical schools, with input from early-career PSs based on their individual experiences and concerns. One of the goals of the conference was to identify current impediments in attracting and supporting PSs and to develop a new set of recommendations for sustaining the PS workforce in 2016 and beyond. This Perspective reports on the opportunities and factors identified at the conference and presents five recommendations designed to increase entry into the PS pipeline and nine recommendations designed to decrease attrition from the PS workflow.


Assuntos
Pesquisa Biomédica , Médicos/provisão & distribuição , Pesquisadores/provisão & distribuição , Recursos Humanos , Conferências de Consenso como Assunto , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA