Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Adv Model Earth Syst ; 14(3): e2021MS002568, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865619

RESUMO

An intermediate complexity moist general circulation model is used to investigate the sensitivity of the quasi-biennial oscillation (QBO) to resolution, diffusion, tropical tropospheric waves, and parameterized gravity waves. Finer horizontal resolution is shown to lead to a shorter period, while finer vertical resolution is shown to lead to a longer period and to a larger amplitude in the lowermost stratosphere. More scale-selective diffusion leads to a faster and stronger QBO, while enhancing the sources of tropospheric stationary wave activity leads to a weaker QBO. In terms of parameterized gravity waves, broadening the spectral width of the source function leads to a longer period and a stronger amplitude although the amplitude effect saturates in the mid-stratosphere when the half-width exceeds ∼ 25 m/s. A stronger gravity wave source stress leads to a faster and stronger QBO, and a higher gravity wave launch level leads to a stronger QBO. All of these sensitivities are shown to result from their impact on the resultant wave-driven momentum torque in the tropical stratosphere. Atmospheric models have struggled to accurately represent the QBO, particularly at moderate resolutions ideal for long climate integrations. In particular, capturing the amplitude and penetration of QBO anomalies into the lower stratosphere (which has been shown to be critical for the tropospheric impacts) has proven a challenge. The results provide a recipe to generate and/or improve the simulation of the QBO in an atmospheric model.

2.
J Adv Model Earth Syst ; 11(9): 2862-2867, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31762932

RESUMO

The atmospheric circulation response to global warming is important for accurate prediction of climate change on regional scales. For the midlatitudes, shifts in the extratropical jet streams have important consequences for precipitation, blocking, and extreme events. It has proven to be a challenge, however, to predict. For example, the North Atlantic jet stream plays a vital role in the climate of eastern North America and Europe; in the last intercomparison of state-of-the-art climate models, the models did not even agree on the sign of its wintertime response to global warming. Perhaps this should not come as a surprise, as we also lack a comprehensive theory for the impact of warming on the midlatitude circulation. In a recent study, Tan et al. (2019, https://doi.org/10.1029/2018MS001492) constructed models of simpler atmospheres to explore the response of the midlatitude jet to global warming. Their idealized atmospheres highlight the difficulty of developing a comprehensive theory for the midlatitude circulation but also provide pathways to improve models of Earth's atmosphere. Models of simpler atmospheres allow one to isolate the impact of specific atmospheric processes and connect theoretical understanding with comprehensive climate prediction systems. Such models can also be used to explore very different atmospheric regimes, from Earth's past to distant planets.

3.
J Clim ; 32(1): 85-108, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831474

RESUMO

Tropospheric features preceding sudden stratospheric warming events (SSWs) are identified using a large compendium of events obtained from a chemistry-climate model. In agreement with recent observational studies, it is found that approximately one-third of SSWs are preceded by extreme episodes of wave activity in the lower troposphere. The relationship becomes stronger in the lower stratosphere, where ~60% of SSWs are preceded by extreme wave activity at 100 hPa. Additional analysis characterizes events that do or do not appear to subsequently impact the troposphere, referred to as downward and non-downward propagating SSWs, respectively. On average, tropospheric wave activity is larger preceding downward-propagating SSWs compared to non-downward propagating events, and associated in particular with a doubly strengthened Siberian high. Of the SSWs that were preceded by extreme lower-tropospheric wave activity, ~2/3 propagated down to the troposphere, and hence the presence of extreme lower-tropospheric wave activity can only be used probabilistically to predict a slight increase or decrease at the onset, of the likelihood of tropospheric impacts to follow. However, a large number of downward and non-downward propagating SSWs must be considered (>35), before the difference becomes statistically significant. The precursors are also robust upon comparison with composites consisting of randomly selected tropospheric northern annular mode (NAM) events. The downward influence and precursors to split and displacement events are also examined. It is found that anomalous upward wave-1 fluxes precede both cases. Splits exhibit a near instantaneous, barotropic response in the stratosphere and troposphere, while displacements have a stronger long-term influence.

4.
Nat Geosci ; 10(9): 663-667, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28966661

RESUMO

The distribution of gases such as ozone and water vapour in the stratosphere - which affect surface climate - is influenced by the meridional overturning of mass in the stratosphere, the Brewer-Dobson circulation. However, observation-based estimates of its global strength are difficult to obtain. Here we present two calculations of the mean strength of the meridional overturning of the stratosphere. We analyze satellite data that document the global diabatic circulation between 2007- 2011, and compare these to three re-analysis data sets and to simulations with a state-of-the-art chemistry-climate model. Using measurements of sulfur hexafluoride (SF6) and nitrous oxide, we calculate the global mean diabatic overturning mass flux throughout the stratosphere. In the lower stratosphere, these two estimates agree, and at a potential temperature level of 460 K (about 20 km or 60 hPa in tropics), the global circulation strength is 6.3-7.6 × 109 kg/s. Higher in the atmosphere, only the SF6-based estimate is available, and it diverges from the re-analysis data and simulations. Interpretation of the SF6 data-based estimate is limited because of a mesospheric sink of SF6; however, the reanalyses also differ substantially from each other. We conclude that the uncertainty in the mean meridional overturning circulation strength at upper levels of the stratosphere amounts to at least 100 %.

5.
Nature ; 505(7484): 538-42, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24451542

RESUMO

In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.


Assuntos
Camada de Gelo , Água do Mar/química , Clima Tropical , Regiões Antárticas , Oceano Atlântico , Simulação por Computador , Aquecimento Global , Modelos Teóricos , Oceano Pacífico , Pressão , Estações do Ano , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA