Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8730-8738, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687645

RESUMO

Iron-sulfur (Fe-S) clusters are essential inorganic cofactors dedicated to a wide range of biological functions, including electron transfer and catalysis. Specialized multiprotein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein, on which Fe-S clusters are assembled before being transferred to cellular targets. Here, we describe the first characterization of the native Fe-S cluster of the anaerobically purified SufBC2D scaffold from Escherichia coli by XAS and Mössbauer, UV-visible absorption, and EPR spectroscopies. Interestingly, we propose that SufBC2D harbors two iron-sulfur-containing species, a [2Fe-2S] cluster and an as-yet unidentified species. Mutagenesis and biochemistry were used to propose amino acid ligands for the [2Fe-2S] cluster, supporting the hypothesis that both SufB and SufD are involved in the Fe-S cluster ligation. The [2Fe-2S] cluster can be transferred to ferredoxin in agreement with the SufBC2D scaffold function. These results are discussed in the context of Fe-S cluster biogenesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Mossbauer , Espectroscopia por Absorção de Raios X , Proteínas de Transporte
2.
J Biol Chem ; 293(20): 7689-7702, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29626095

RESUMO

Fe-S cluster-containing proteins occur in most organisms, wherein they assist in myriad processes from metabolism to DNA repair via gene expression and bioenergetic processes. Here, we used both in vitro and in vivo methods to investigate the capacity of the four Fe-S carriers, NfuA, SufA, ErpA, and IscA, to fulfill their targeting role under oxidative stress. Likewise, Fe-S clusters exhibited varying half-lives, depending on the carriers they were bound to; an NfuA-bound Fe-S cluster was more stable (t½ = 100 min) than those bound to SufA (t½ = 55 min), ErpA (t½ = 54 min), or IscA (t½ = 45 min). Surprisingly, the presence of NfuA further enhanced stability of the ErpA-bound cluster to t½ = 90 min. Using genetic and plasmon surface resonance analyses, we showed that NfuA and ErpA interacted directly with client proteins, whereas IscA or SufA did not. Moreover, NfuA and ErpA interacted with one another. Given all of these observations, we propose an architecture of the Fe-S delivery network in which ErpA is the last factor that delivers cluster directly to most if not all client proteins. NfuA is proposed to assist ErpA under severely unfavorable conditions. A comparison with the strategy employed in yeast and eukaryotes is discussed.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Redes e Vias Metabólicas , Estresse Oxidativo , Oxigênio/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxirredução
3.
Mol Microbiol ; 86(1): 155-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22966982

RESUMO

Biosynthesis of iron-sulphur (Fe-S) proteins is catalysed by multi-protein systems, ISC and SUF. However, 'non-ISC, non-SUF' Fe-S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a 'non-ISC, non SUF' component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a 'degenerate' A-type carrier domain (ATC*) lacking Fe-S cluster co-ordinating Cys ligands. The Nfu domain binds a [4Fe-4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo-NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe-S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe-S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Aconitato Hidratase/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
4.
J Biol Chem ; 283(20): 14084-91, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18339628

RESUMO

Iron/sulfur (Fe/S) proteins are central to the functioning of cells in both prokaryotes and eukaryotes. Here, we show that the yhgI gene, which we renamed nfuA, encodes a two-domain protein that is required for Fe/S biogenesis in Escherichia coli. The N-terminal domain resembles the so-called Fe/S A-type scaffold but, curiously, has lost the functionally important Cys residues. The C-terminal domain shares sequence identity with Nfu proteins. Mössbauer and UV-visible spectroscopic analyses revealed that, upon reconstitution, NfuA binds a [4Fe-4S] cluster. Moreover, NfuA can transfer this cluster to apo-aconitase. Mutagenesis studies indicated that the N- and C-terminal domains are important for NfuA function in vivo. Similarly, the functional importance of Cys residues present in the Nfu-like domain was demonstrated in vivo by introducing Cys-->Ser mutations. In vivo investigations revealed that the nfuA gene is important for E. coli to sustain oxidative stress and iron starvation. Also, combining nfuA with either isc or suf mutations led to additive phenotypic deficiencies, indicating that NfuA is a bona fide new player in Isc- and Suf-dependent Fe/S biogenesis pathways. Taken together, these data demonstrate that NfuA intervenes in the maturation of apoproteins in E. coli, allowing them to acquire Fe/S clusters. By taking into account results from numerous previous transcriptomic studies that had suggested a link between NfuA and protein misfolding, we discuss the possibility that NfuA could act as a scaffold/chaperone for damaged Fe/S proteins.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/fisiologia , Ferro/metabolismo , Estresse Oxidativo , Sequência de Aminoácidos , Proliferação de Células , Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/química , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta/métodos , Temperatura
5.
Proc Natl Acad Sci U S A ; 104(34): 13626-31, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17698959

RESUMO

Understanding the biogenesis of iron-sulfur (Fe-S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe-S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli an A-type Fe-S protein that we named ErpA. Remarkably, erpA was found essential for growth of E. coli in the presence of oxygen or alternative electron acceptors. It was concluded that isoprenoid biosynthesis was impaired by the erpA mutation. First, the eukaryotic mevalonate-dependent pathway for biosynthesis of isopentenyl diphosphate restored the respiratory defects of an erpA mutant. Second, the erpA mutant contained a greatly reduced amount of ubiquinone and menaquinone. Third, ErpA bound Fe-S clusters and transferred them to apo-IspG, a protein catalyzing isopentenyl diphosphate biosynthesis in E. coli. Surprisingly, the erpA gene maps at a distance from any other Fe-S biogenesis-related gene. ErpA is an A-type Fe-S protein that is characterized by an essential role in cellular metabolism.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Aerobiose , Anaerobiose , Benzoquinonas/metabolismo , Respiração Celular , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/classificação , Proteínas Ferro-Enxofre/genética , Ácido Mevalônico/farmacologia , Viabilidade Microbiana , Família Multigênica , Mutação/genética , Fenótipo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA