Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425954

RESUMO

Background: Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods: Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results: THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion: We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

2.
Commun Biol ; 5(1): 1322, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460747

RESUMO

Most experimental methods for structural biology proceed in vitro and therefore the contribution of the intracellular environment on protein structure and dynamics is absent. Studying proteins at atomic resolution in living mammalian cells has been elusive due to the lack of methodologies. In-cell nuclear magnetic resonance spectroscopy (in-cell NMR) is an emerging technique with the power to do so. Here, we improved current methods of in-cell NMR by the development of a reporter system that allows monitoring the delivery of exogenous proteins into mammalian cells, a process that we called here "transexpression". The reporter system was used to develop an efficient protocol for in-cell NMR which enables spectral acquisition with higher quality for both disordered and folded proteins. With this method, the 3D atomic resolution structure of the model protein GB1 in human cells was determined with a backbone root-mean-square deviation (RMSD) of 1.1 Å.


Assuntos
Imageamento por Ressonância Magnética , Animais , Humanos , Espectroscopia de Ressonância Magnética , Mamíferos
3.
Eur J Nucl Med Mol Imaging ; 49(7): 2137-2152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35128565

RESUMO

PURPOSE: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 µm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS: PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS: We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 µm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/metabolismo , Proteínas tau/metabolismo
4.
Sci Transl Med ; 13(623): eabe7099, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878820

RESUMO

Slow-wave sleep (SWS) modulation in rodent models of Alzheimer's disease alters extracellular amyloid burden. In Parkinson's disease (PD), SWS appears to be closely linked with disease symptoms and progression. PD is characterized by damaging intracellular α-synuclein (αSyn) deposition that propagates extracellularly, contributing to disease spread. Intracellular αSyn is sensitive to degradation, whereas extracellular αSyn may be eliminated by glymphatic clearance, a process increased during SWS. Here, we explored whether long-term slow-wave modulation in murine models of PD presenting αSyn aggregation alters pathological protein burden and, thus, might constitute a valuable therapeutic target. Sleep-modulating treatments showed that enhancing slow waves in both VMAT2-deficient and A53T mouse models of PD reduced pathological αSyn accumulation compared to control animals. Nonpharmacological sleep deprivation had the opposite effect in VMAT2-deficient mice, severely increasing the pathological burden. We also found that SWS enhancement was associated with increased recruitment of aquaporin-4 to perivascular sites, suggesting a possible increase of glymphatic function. Furthermore, mass spectrometry data revealed differential and specific up-regulation of functional protein clusters linked to proteostasis upon slow wave­enhancing interventions. Overall, the beneficial effect of SWS enhancement on neuropathological outcome in murine synucleinopathy models mirrors findings in models of Alzheimer. Modulating SWS might constitute an effective strategy for modulating PD pathology in patients.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Sono de Ondas Lentas , Sinucleinopatias , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
Biomed Opt Express ; 11(9): 4989-5002, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014595

RESUMO

Current intravital microscopy techniques visualize tauopathy with high-resolution, but have a small field-of-view and depth-of-focus. Herein, we report a transcranial detection of tauopathy over the entire cortex of P301L tauopathy mice using large-field multifocal illumination (LMI) fluorescence microscopy technique and luminescent conjugated oligothiophenes. In vitro assays revealed that fluorescent ligand h-FTAA is optimal for in vivo tau imaging, which was confirmed by observing elevated probe retention in the cortex of P301L mice compared to non-transgenic littermates. Immunohistochemical staining further verified the specificity of h-FTAA to detect tauopathy in P301L mice. The new imaging platform can be leveraged in pre-clinical mechanistic studies of tau spreading and clearance as well as longitudinal monitoring of tau targeting therapeutics.

6.
Methods Mol Biol ; 2141: 873-893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696394

RESUMO

In-cell NMR enables structural insights at atomic resolution of proteins in their natural environment. To date, very few methods have been developed to study proteins by in-cell NMR in mammalian systems. Here we describe a detailed protocol to conduct in-cell NMR on the intrinsically disordered protein of alpha-Synuclein (αSyn) in mammalian cells. This chapter includes a simplified expression and purification protocol of recombinant αSyn and its delivery into mammalian cells. The chapter also describes how to assess the cell leakage that might occur to the cells, the setup of the instrument, and how to perform basic analyses with the obtained NMR data.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Célula Única/métodos , Animais , Eletroforese em Gel de Poliacrilamida/métodos , Eletroporação , Escherichia coli , Células HEK293 , Humanos , Marcação por Isótopo/métodos , Mamíferos , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/instrumentação , Proteínas Recombinantes/análise , Proteínas Recombinantes/isolamento & purificação , Corantes de Rosanilina , Coloração e Rotulagem/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/química , alfa-Sinucleína/isolamento & purificação
7.
Nature ; 577(7788): 127-132, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802003

RESUMO

Neurodegeneration in patients with Parkinson's disease is correlated with the occurrence of Lewy bodies-intracellular inclusions that contain aggregates of the intrinsically disordered protein α-synuclein1. The aggregation propensity of α-synuclein in cells is modulated by specific factors that include post-translational modifications2,3, Abelson-kinase-mediated phosphorylation4,5 and interactions with intracellular machineries such as molecular chaperones, although the underlying mechanisms are unclear6-8. Here we systematically characterize the interaction of molecular chaperones with α-synuclein in vitro as well as in cells at the atomic level. We find that six highly divergent molecular chaperones commonly recognize a canonical motif in α-synuclein, consisting of the N terminus and a segment around Tyr39, and hinder the aggregation of α-synuclein. NMR experiments9 in cells show that the same transient interaction pattern is preserved inside living mammalian cells. Specific inhibition of the interactions between α-synuclein and the chaperone HSC70 and members of the HSP90 family, including HSP90ß, results in transient membrane binding and triggers a remarkable re-localization of α-synuclein to the mitochondria and concomitant formation of aggregates. Phosphorylation of α-synuclein at Tyr39 directly impairs the interaction of α-synuclein with chaperones, thus providing a functional explanation for the role of Abelson kinase in Parkinson's disease. Our results establish a master regulatory mechanism of α-synuclein function and aggregation in mammalian cells, extending the functional repertoire of molecular chaperones and highlighting new perspectives for therapeutic interventions for Parkinson's disease.


Assuntos
alfa-Sinucleína/metabolismo , Sobrevivência Celular , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/genética
8.
Sci Transl Med ; 11(495)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167929

RESUMO

Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading. We found that stable αSyn fibrils substantially accumulate in different cell lines upon internalization, whereas αSyn monomers, oligomers, and dissociable fibrils do not. Our data indicate that the uptake-mediated accumulation of αSyn in a human-derived neuroblastoma cell line triggered an adaptive response that involved proteins linked to ubiquitin ligases of the S-phase kinase-associated protein 1 (SKP1), cullin-1 (Cul1), and F-box domain-containing protein (SCF) family. We found that SKP1, Cul1, and the F-box/LRR repeat protein 5 (FBXL5) colocalized and physically interacted with internalized αSyn in cultured cells. Moreover, the SCF containing the F-box protein FBXL5 (SCFFBXL5) catalyzed αSyn ubiquitination in reconstitution experiments in vitro using recombinant proteins and in cultured cells. In the human brain, SKP1 and Cul1 were recruited into Lewy bodies from brainstem and neocortex of patients with PD and related neurological disorders. In both transgenic and nontransgenic mice, intracerebral administration of exogenous αSyn fibrils triggered a Lewy body-like pathology, which was amplified by SKP1 or FBXL5 loss of function. Our data thus indicate that SCFFXBL5 regulates αSyn in vivo and that SCF ligases may constitute targets for the treatment of PD and other α-synucleinopathies.


Assuntos
Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Benzotiazóis/metabolismo , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Proteoma/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA