Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Dent Res ; 7(4): 502-511, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33382539

RESUMO

OBJECTIVES: New strategies for implant surface functionalization in the prevention of peri-implantitis while not compromising osseointegration are currently explored. The aim of this in vivo study was to assess the osseointegration of a titanium-silica composite implant, previously shown to enable controlled release of therapeutic concentrations of chlorhexidine, in the Göttingen mini-pig oral model. MATERIAL AND METHODS: Three implant groups were designed: macroporous titanium implants (Ti-Porous); macroporous titanium implants infiltrated with mesoporous silica (Ti-Porous + SiO2 ); and conventional titanium implants (Ti-control). Mandibular last premolar and first molar teeth were extracted bilaterally and implants were installed. After 1 month healing, the bone in contact with the implant and the bone regeneration in the peri-implant gap was evaluated histomorphometrically. RESULTS: Bone-to-implant contact and peri-implant bone volume for Ti-Porous versus Ti-Porous + SiO2 implants did not differ significantly, but were significantly higher in the Ti-Control group compared with Ti-Porous + SiO2 implants. Functionalization of titanium implants via infiltration of a SiO2 phase into the titanium macropores does not seem to inhibit implant osseointegration. Yet, the importance of the implant macro-design, in particular the screw thread design in a marginal gap implant surgery set-up, was emphasized by the outstanding results of the Ti-Control implant. CONCLUSIONS: Next-generation implants made of macroporous Ti infiltrated with mesoporous SiO2 do not seem to compromise the osseointegration process. Such implant functionalization may be promising for the prevention and treatment of peri-implantitis given the evidenced potential of mesoporous SiO2 for controlled drug release.


Assuntos
Próteses e Implantes , Animais , Antibacterianos , Implantes Dentários , Peri-Implantite/prevenção & controle , Dióxido de Silício , Propriedades de Superfície , Suínos , Porco Miniatura , Titânio
2.
J Oral Microbiol ; 9(1): 1300366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473880

RESUMO

In nature, bacteria predominantly reside in structured, surface-attached communities embedded in a self-produced, extracellular matrix. These so-called biofilms play an important role in the development and pathogenesis of many infections, as they are difficult to eradicate due to their resistance to antimicrobials and host defense mechanisms. This review focusses on the biofilm-forming periodontal bacterium Porphyromonas gingivalis. Current knowledge on the virulence mechanisms underlying P. gingivalis biofilm formation is presented. In addition, oral infectious diseases in which P. gingivalis plays a key role are described, and an overview of conventional and new therapies for combating P. gingivalis biofilms is given. More insight into this intriguing pathogen might direct the development of better strategies to combat oral infections.

3.
FEMS Microbiol Lett ; 364(2)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087617

RESUMO

Oral infections are among the most common diseases worldwide. Many protocols for the prevention and treatment of oral infections have been described, yet no golden standard has been developed so far. The antiseptic chlorhexidine and antibiotics are often used in these treatment procedures. However, long-term use of chlorhexidine can lead to side effects and extensive use of antibiotics can promote the development of antibiotic-resistant bacteria, which in turn can compromise the effectiveness of the treatment. Consequently, it remains important to search for new antibacterial agents for the treatment of oral infections. In this study, we report on the antibacterial activity of the antiasthma drug zafirlukast against oral pathogens Porphyromonas gingivalis and Streptococcus mutans. Furthermore, its activity against oral biofilms grown on titanium surfaces was confirmed. In addition, we demonstrated that zafirlukast displays no cytotoxicity against human osteoblasts. Combined, this study paves the way for further research to determine the potential of zafirlukast to be used as a new antibiotic against oral pathogens.


Assuntos
Antiasmáticos/farmacologia , Antibacterianos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Compostos de Tosil/farmacologia , Antiasmáticos/toxicidade , Antibacterianos/toxicidade , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos , Indóis , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Fenilcarbamatos , Porphyromonas gingivalis/fisiologia , Streptococcus mutans/fisiologia , Sulfonamidas
4.
Clin Exp Dent Res ; 3(2): 69-76, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29744181

RESUMO

Porphyromonas gingivalis is a major pathogen involved in oral diseases such as periodontitis and peri-implantitis. Management of these diseases typically includes mechanical debridement of the colonized surfaces followed by application of antiseptics or antibiotics. Disadvantages associated with the use of antiseptics and the growing worldwide problem of antibiotic resistance have necessitated the search for alternative agents. In this study, the antibacterial and antibiofilm properties of AM404, an active metabolite of paracetamol, were tested against P. gingivalis and other bacterial pathogens. The activity of AM404 was tested against 10 bacteria, including both oral and nonoral human pathogens. The minimal inhibitory concentration (MIC) of AM404 was determined by measuring optical density (OD) values. The minimum biofilm inhibitory concentration (MBIC) was detected by crystal violet staining. The activity of structural analogs of AM404 was tested by MIC determinations. The effect of AM404 on P. gingivalis biofilms formed on titanium disks as a model for dental implants was evaluated by colony forming unit counting. Potential cytotoxicity of AM404 towards HEK-293 (human embryonic kidney cells), HepG2 (human hepatoma cells), IEC-6 (rat intestinal cells), and Panc-1 cells (pancreatic cancer cells) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. To get more insight in the mode of action of AM404, we used the fluorescent dyes N-phenyl-1-napthylamine and SYTOX green to investigate outer and inner membrane damage of P. gingivalis induced by AM404, respectively. Of all tested pathogens, AM404 only inhibited growth and biofilm formation of P. gingivalis. Moreover, it showed potent activity against P. gingivalis biofilms formed on titanium surfaces. A structure-activity analysis demonstrated that the unsaturated carbon chain is essential for its antibacterial activity. Importantly, AM404 was not toxic towards the tested mammalian cells up to concentrations approaching 4× the MIC. Membrane damage assays using fluorescent probes N-phenyl-1-napthylamine and SYTOX green revealed that membrane permeabilization presumably is the primary antibacterial mode of action of AM404. Collectively, our results suggest that AM404 has the potential to be used for the development of new drugs specifically targeting P. gingivalis-related infections.

5.
Artigo em Inglês | MEDLINE | ID: mdl-27993858

RESUMO

The spread of antibiotic resistance and the challenges associated with antiseptics such as chlorhexidine have necessitated a search for new antibacterial agents against oral bacterial pathogens. As a result of failing traditional approaches, drug repurposing has emerged as a novel paradigm to find new antibacterial agents. In this study, we examined the effects of the FDA-approved anticancer agent toremifene against the oral bacteria Porphyromonas gingivalis and Streptococcus mutans We found that the drug was able to inhibit the growth of both pathogens, as well as prevent biofilm formation, at concentrations ranging from 12.5 to 25 µM. Moreover, toremifene was shown to eradicate preformed biofilms at concentrations ranging from 25 to 50 µM. In addition, we found that toremifene prevents P. gingivalis and S. mutans biofilm formation on titanium surfaces. A time-kill study indicated that toremifene is bactericidal against S. mutans Macromolecular synthesis assays revealed that treatment with toremifene does not cause preferential inhibition of DNA, RNA, or protein synthesis pathways, indicating membrane-damaging activity. Biophysical studies using fluorescent probes and fluorescence microscopy further confirmed the membrane-damaging mode of action. Taken together, our results suggest that the anticancer agent toremifene is a suitable candidate for further investigation for the development of new treatment strategies for oral bacterial infections.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Hormonais/farmacologia , Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Toremifeno/farmacologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Placa Dentária/tratamento farmacológico , Placa Dentária/microbiologia , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana Múltipla/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/ultraestrutura , Streptococcus mutans/metabolismo , Streptococcus mutans/ultraestrutura , Titânio/análise
6.
PLoS One ; 11(5): e0155139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27167126

RESUMO

Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Bacterianos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipossomos/química , Substâncias Macromoleculares/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Fosfolipídeos/metabolismo , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , Staphylococcus aureus/genética , Fatores de Tempo
7.
J Orthop Res ; 34(12): 2191-2198, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27003909

RESUMO

Biofilm-associated infections, particularly those caused by Staphylococcus aureus, are a major cause of implant failure. Covalent coupling of broad-spectrum antimicrobials to implants is a promising approach to reduce the risk of infections. In this study, we developed titanium substrates on which the recently discovered antibacterial agent SPI031, a N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol, was covalently linked (SPI031-Ti). We found that SPI031-Ti substrates prevent biofilm formation of S. aureus and Pseudomonas aeruginosa in vitro, as quantified by plate counting and fluorescence microscopy. To test the effectiveness of SPI031-Ti substrates in vivo, we used an adapted in vivo biomaterial-associated infection model in mice in which SPI031-Ti substrates were implanted subcutaneously and subsequently inoculated with S. aureus. Using this model, we found a significant reduction in biofilm formation (up to 98%) on SPI031-Ti substrates compared to control substrates. Finally, we demonstrated that the functionalization of the titanium surfaces with SPI031 did not influence the adhesion and proliferation of human cells important for osseointegration and bone repair. In conclusion, these data demonstrate the clinical potential of SPI031 to be used as an antibacterial coating for implants, thereby reducing the incidence of implant-associated infections. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2191-2198, 2016.


Assuntos
Anti-Infecciosos/uso terapêutico , Carbazóis/uso terapêutico , Infecções Relacionadas à Prótese/prevenção & controle , Animais , Anti-Infecciosos/farmacologia , Carbazóis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Titânio
8.
J Antimicrob Chemother ; 71(4): 936-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26702917

RESUMO

OBJECTIVES: Biofilm-associated implant infections represent a serious public health problem. Covalent immobilization of antimicrobial agents on titanium (Ti), thereby inhibiting biofilm formation of microbial pathogens, is a solution to this problem. METHODS: Vancomycin (VAN) and caspofungin (CAS) were covalently bound on Ti substrates using an improved processing technique adapted to large-scale coating of implants. Resistance of the VAN-coated Ti (VAN-Ti) and CAS-coated Ti (CAS-Ti) substrates against in vitro biofilm formation of the bacterium Staphylococcus aureus and the fungal pathogen Candida albicans was determined by plate counting and visualized by confocal laser scanning microscopy. The efficacy of the coated Ti substrates was also tested in vivo using an adapted biomaterial-associated murine infection model in which control-Ti, VAN-Ti or CAS-Ti substrates were implanted subcutaneously and subsequently challenged with the respective pathogens. The osseointegration potential of VAN-Ti and CAS-Ti was examined in vitro using human bone marrow-derived stromal cells, and for VAN-Ti also in a rat osseointegration model. RESULTS: In vitro biofilm formation of S. aureus and C. albicans on VAN-Ti and CAS-Ti substrates, respectively, was significantly reduced compared with biofilm formation on control-Ti. In vivo, we observed over 99.9% reduction in biofilm formation of S. aureus on VAN-Ti substrates and 89% reduction in biofilm formation of C. albicans on CAS-Ti substrates, compared with control-Ti substrates. The coated substrates supported osseointegration in vitro and in vivo. CONCLUSIONS: These data demonstrate the clinical potential of covalently bound VAN and CAS on Ti to reduce microbial biofilm formation without jeopardizing osseointegration.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Candida albicans/fisiologia , Caspofungina , Linhagem Celular , Equinocandinas/farmacologia , Feminino , Humanos , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Osseointegração , Próteses e Implantes/microbiologia , Staphylococcus aureus/fisiologia , Vancomicina/farmacologia
9.
Bioorg Med Chem Lett ; 24(23): 5404-8, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25453797

RESUMO

Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 µg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.


Assuntos
Antibacterianos/uso terapêutico , Carbazóis/química , Pseudomonas aeruginosa/isolamento & purificação , Biofilmes , Carbazóis/análise , Humanos , Testes de Sensibilidade Microbiana
10.
Antimicrob Agents Chemother ; 58(12): 7606-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288093

RESUMO

We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candidíase Cutânea/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Toremifeno/farmacologia , Administração Oral , Animais , Biofilmes/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candidíase Cutânea/microbiologia , Cateteres de Demora , Feminino , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA