Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Science ; 383(6679): 173-178, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207052

RESUMO

The reactivity of molecular oxygen is crucial to clean energy technologies and green chemical synthesis, but kinetic barriers complicate both applications. In synthesis, dioxygen should be able to undergo oxygen atom transfer to two organic molecules with perfect atom economy, but such reactivity is rare. Monooxygenase enzymes commonly reductively activate dioxygen by sacrificing one of the oxygen atoms to generate a more reactive oxidant. Here, we used a manganese-tetraphenylporphyrin catalyst to pair electrochemical oxygen reduction and water oxidation, generating a reactive manganese-oxo at both electrodes. This process supports dioxygen atom transfer to two thioether substrate molecules, generating two equivalents of sulfoxide with a single equivalent of dioxygen. This net dioxygenase reactivity consumes no electrons but uses electrochemical energy to overcome kinetic barriers.

2.
J Am Chem Soc ; 146(5): 3521-3530, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284769

RESUMO

Copper-catalyzed aerobic oxidative coupling of diaryl imines provides a route for conversion of ammonia to hydrazine. The present study uses experimental and density functional theory computational methods to investigate the mechanism of N-N bond formation, and the data support a mechanism involving bimolecular coupling of Cu-coordinated iminyl radicals. Computational analysis is extended to CuII-mediated C-C, N-N, and O-O coupling reactions involved in the formation of cyanogen (NC-CN) from HCN, 1,3-butadiyne from ethyne (i.e., Glaser coupling), hydrazine from ammonia, and hydrogen peroxide from water. The results reveal two different mechanistic pathways. Heteroatom ligands with an uncoordinated lone pair (iminyl, NH2, OH) undergo charge transfer to CuII, generating ligand-centered radicals that undergo facile bimolecular radical-radical coupling. Ligands lacking a lone pair (CN and CCH) form bridged binuclear diamond-core structures that undergo C-C coupling. This mechanistic bifurcation is rationalized by analysis of spin densities in key intermediates and transition states, as well as multiconfigurational calculations. Radical-radical coupling is especially favorable for N-N coupling owing to energetically favorable charge transfer in the intermediate and thermodynamically favorable product formation.

3.
J Phys Chem A ; 128(1): 328-332, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157490

RESUMO

Integrated rate equations are straightforward to fit to experimental data to verify a proposed mechanism and to extract kinetic parameters. Such equations are derived for reversible disproportionation/comproportionation reactions with any set of initial concentrations. Extraction of forward and reverse rate constants from experimental data by fitting the rate law to the data is demonstrated for the disproportionation of 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO) under acidic conditions where the approach to equilibrium is observed.

4.
Nature ; 623(7985): 71-76, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604186

RESUMO

Electrochemical synthesis can provide more sustainable routes to industrial chemicals1-3. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H2) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications4, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option1,5,6, but many reductions require anhydrous, air-free reaction conditions. In such cases, H2 represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions7-12. Here we report a mediated H2 anode that achieves indirect electrochemical oxidation of H2 by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H2 anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry13-15. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H2 anode technology disclosed here offers a general strategy to support H2-driven electrosynthetic reductions.

5.
J Am Chem Soc ; 144(25): 11253-11262, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699525

RESUMO

Molecular metal complexes catalyze aerobic oxidation reactions via redox cycling at the metal center to effect sequential activation of O2 and the substrate. Metal surfaces can catalyze the same transformations by coupling independent half-reactions for oxygen reduction and substrate oxidation mediated via the exchange of band-electrons. Metal- and nitrogen-doped carbons (MNCs) are promising catalysts for aerobic oxidation that consist of molecule-like active sites embedded in conductive carbon hosts. Owing to their combined molecular and metallic features, it remains unclear whether they catalyze aerobic oxidation via the sequential redox cycling pathways of molecules or band-mediated pathways of metals. Herein, we simultaneously track the potential of the catalyst and the rate of turnover of aerobic hydroquinone oxidation on a cobalt-based MNC catalyst in contact with a carbon electrode. By comparing operando measurements of rate and potential with the current-voltage behavior of each constituent half-reaction under identical conditions, we show that these molecular materials can display the band-mediated reaction mechanisms of extended metallic solids. We show that the action of these band-mediated mechanisms explains the fractional reaction orders in both oxygen and hydroquinone, the time evolution of catalyst potential and rate, and the dependence of rate on the overall reaction free energy. Selective poisoning experiments suggest that oxygen reduction proceeds at cobalt sites, whereas hydroquinone oxidation proceeds at native carbon-oxide defects on the MNC catalyst. These findings highlight that molecule-like active sites can take advantage of band-mediated mechanisms when coupled to conductive hosts.


Assuntos
Carbono , Hidroquinonas , Cobalto/química , Oxirredução , Oxigênio/química
6.
J Org Chem ; 86(22): 15875-15885, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609137

RESUMO

Redox reactions are ubiquitous in organic synthesis and intrinsic to organic electrosynthesis. The language and concepts used to describe reactions in these domains are sufficiently different to create barriers that hinder broader adoption and understanding of electrochemical methods. To bridge these gaps, this Synopsis compares chemical and electrochemical redox reactions, including concepts of free energy, voltage, kinetic barriers, and overpotential. This discussion is intended to increase the accessibility of electrochemistry for organic chemists lacking formal training in this area.


Assuntos
Química Orgânica , Intuição , Técnicas Eletroquímicas , Eletroquímica , Oxirredução
7.
ACS Energy Lett ; 6(4): 1533-1539, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017916

RESUMO

Redox reservoirs (RRs) may be used to decouple the two half-reactions of water electrolysis, enabling spatial and temporal separation of hydrogen and oxygen evolution. Organic RRs are appealing candidates for this application; however, their instability limits their utility. Here, we show that a tetrathioether-substituted quinone, tetramercaptopropanesulfonate quinone (TMQ), exhibits significantly enhanced stability relative to anthraquinone-2,7-disulfonate (AQDS), the most effective organic RR reported previously. The enhanced stability, confirmed by symmetric flow battery experiments under relevant conditions, enables stable electrochemical production of H2 and O2 in a continuous flow electrolysis cell. The reduced RR, tetramercaptopropanesulfonate hydroquinone (TMHQ), is not susceptible to decomposition, while the oxidized state, TMQ, undergoes slow decomposition, evident only after sustained operation (>60 h). Analysis of the byproducts provides that basis for a decomposition mechanism, establishing a foundation for the design of new organic RRs with even better performance.

8.
J Am Chem Soc ; 142(28): 12349-12356, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32520537

RESUMO

Hydrazine is an important industrial chemical and fuel that has attracted considerable attention for use in liquid fuel cells. Ideally, hydrazine could be prepared via direct oxidative coupling of ammonia, but thermodynamic and kinetic factors limit the viability of this approach. The present study evaluates three different electrochemical strategies for the oxidative homocoupling of benzophenone imine, a readily accessible ammonia surrogate. Hydrolysis of the resulting benzophenone azine affords hydrazine and benzophenone, with the latter amenable to recycling. The three different electrochemical N-N coupling methods are (1) a proton-coupled electron-transfer process promoted by a phosphate base, (2) an iodine-mediated reaction involving intermediate N-I bond formation, and (3) a copper-catalyzed N-N coupling process. Analysis of the thermodynamic efficiencies for these electrochemical imine-to-azine oxidation reactions reveals low overpotentials (η) for the copper- and iodine-mediated processes (390 and 470 mV, respectively), but a much higher value for the proton-coupled pathway (η ≈ 1.6 V). A similar approach is used to assess molecular electrocatalytic methods for electrochemical oxidation of ammonia to dinitrogen.


Assuntos
Amônia/química , Técnicas Eletroquímicas , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Oxirredução , Termodinâmica
9.
Chem Commun (Camb) ; 56(8): 1199-1202, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31898720

RESUMO

Conjugate addition of thiols to benzoquinones has been coupled to in situ electrochemical oxidation of the resulting hydroquinone to enable full substitution of quinone C-H bonds. The sulfonated thioether-substituted quinones exhibit high solublity and stability in aqueous solution and have redox potentials ranging from 440-750 mV vs. SHE. The electrosynthetic protocol is effective on >100 g scale.

10.
Chem Sci ; 11(4): 1170-1175, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34084374

RESUMO

Catalytic N-N coupling is a valuable transformation for chemical synthesis and energy conversion. Here, mechanistic studies are presented for two related copper-catalyzed oxidative aerobic N-N coupling reactions, one involving the synthesis of a pharmaceutically relevant triazole and the other relevant to the oxidative conversion of ammonia to hydrazine. Analysis of catalytic and stoichiometric N-N coupling reactions support an "oxidase"-type catalytic mechanism with two redox half-reactions: (1) aerobic oxidation of a CuI catalyst and (2) CuII-promoted N-N coupling. Both reactions feature turnover-limiting oxidation of CuI by O2, and this step is inhibited by the N-H substrate(s). The results highlight the unexpected facility of the N-N coupling step and establish a foundation for development of improved catalysts for these transformations.

11.
J Am Chem Soc ; 140(34): 10890-10899, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30060652

RESUMO

A soluble, bis-ketiminate-ligated Co complex [Co(N2O2)] was recently shown to catalyze selective reduction of O2 to H2O2 with an overpotential as low as 90 mV. Here we report experimental and computational mechanistic studies of the Co(N2O2)-catalyzed O2 reduction reaction (ORR) with decamethylferrocene (Fc*) as the reductant in the presence of AcOH in MeOH. Analysis of the Co/O2 binding stoichiometry and kinetic studies support an O2 reduction pathway involving a mononuclear cobalt species. The catalytic rate exhibits a first-order kinetic dependence on [Co(N2O2)] and [AcOH], but no dependence on [Fc*] or [O2]. Differential pulse voltammetry and computational studies support CoIII-hydroperoxide as the catalyst resting state and protonation of this species as the rate-limiting step of the catalytic reaction. These results contrast previous mechanisms proposed for other Co-catalyzed ORR systems, which commonly feature rate-limiting protonation of a CoIII-superoxide adduct earlier in the catalytic cycle. Computational studies show that protonation is strongly favored at the proximal oxygen of the CoIII(OOH) species, accounting for the high selectivity for formation of hydrogen peroxide. Further analysis shows that a weak dependence of the ORR rate on the p Ka values of the protonated CoIII(OOH) species across a series of Co(N2O2) catalysts provides a rationale for the unusually low overpotential observed for O2 reduction to H2O2.

12.
J Org Chem ; 83(14): 7323-7330, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29182282

RESUMO

Electrochemical studies of the reduction and oxidation reactions of five different organic nitroxyls have been performed across a wide pH range (0-13). The resulting Pourbaix diagrams illustrate structural effects on their various redox potentials and on the p Ka values of the corresponding hydroxylamine and hydroxylammonium ions. Evidence is also given for the reversible formation of a hydroxylamine N-oxide when nitroxyls are oxidized in alkaline media. Structural effects on the thermodynamics of this reaction are assessed.


Assuntos
Compostos Azabicíclicos/química , Óxidos N-Cíclicos/química , Catálise , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oxirredução
13.
Proc Natl Acad Sci U S A ; 114(12): 3050-3055, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265083

RESUMO

NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

14.
J Am Chem Soc ; 137(48): 15090-3, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26601790

RESUMO

Nickel-iron oxides/hydroxides are among the most active electrocatalysts for the oxygen evolution reaction. In an effort to gain insight into the role of Fe in these catalysts, we have performed operando Mössbauer spectroscopic studies of a 3:1 Ni:Fe layered hydroxide and a hydrous Fe oxide electrocatalyst. The catalysts were prepared by a hydrothermal precipitation method that enabled catalyst growth directly on carbon paper electrodes. Fe(4+) species were detected in the NiFe hydroxide catalyst during steady-state water oxidation, accounting for up to 21% of the total Fe. In contrast, no Fe(4+) was detected in the Fe oxide catalyst. The observed Fe(4+) species are not kinetically competent to serve as the active site in water oxidation; however, their presence has important implications for the role of Fe in NiFe oxide electrocatalysts.

15.
ACS Cent Sci ; 1(5): 234-43, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27162977

RESUMO

Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NO x ) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NO x species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NO x species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NO x species, together with kinetically efficient reduction of oxidized NO x species by TEMPO and other organic nitroxyls.

16.
Inorg Chem ; 52(6): 2796-8, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23458735

RESUMO

A modular synthetic method has been developed for the preparation of Ru polypyridyl complexes bearing a terminal alkyne. This method proceeds through a readily accessible intermediate with a silyl-protected alkyne and allows access to a variety of five- and six-coordinate Ru complexes. These complexes can be easily attached to azide-functionalized electrode surfaces with only slight perturbation of the redox properties of the parent complex.


Assuntos
Alcinos/química , Química Click , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Piridinas/química , Rutênio/química , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular
18.
J Am Chem Soc ; 133(36): 14431-42, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21806043

RESUMO

Building upon recent study of cobalt-oxide electrocatalysts in fluoride-buffered electrolyte at pH 3.4, we have undertaken a mechanistic investigation of cobalt-catalyzed water oxidation in aqueous buffering electrolytes from pH 0-14. This work includes electrokinetic studies, cyclic voltammetric analysis, and electron paramagnetic resonance (EPR) spectroscopic studies. The results illuminate a set of interrelated mechanisms for electrochemical water oxidation in alkaline, neutral, and acidic media with electrodeposited Co-oxide catalyst films (CoO(x)(cf)s) as well as for a homogeneous Co-catalyzed electrochemical water oxidation reaction. Analysis of the pH dependence of quasi-reversible features in cyclic voltammograms of the CoO(x)(cf)s provides the basis for a Pourbaix diagram that closely resembles a Pourbaix diagram derived from thermodynamic free energies of formation for a family of Co-based layered materials. Below pH 3, a shift from heterogeneous catalysis producing O(2) to homogeneous catalysis yielding H(2)O(2) is observed. Collectively, the results reported here provide a foundation for understanding the structure, stability, and catalytic activity of aqueous cobalt electrocatalysts for water oxidation.


Assuntos
Cobalto/química , Entropia , Peróxido de Hidrogênio/química , Óxidos/química , Água/química , Catálise , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Oxirredução
19.
ACS Appl Mater Interfaces ; 3(8): 3110-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21766849

RESUMO

We demonstrate the use of "click" chemistry to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) nanoparticle thin films. By using photochemical grafting to link a short-chain alcohol to the surface followed by conversion to a surface azide group, we enable use of the Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) reaction, a form of "click" chemistry, on metal oxide surfaces. Results are shown with three model compounds to test the surface chemistry and subsequent ability to achieve electrochemical and photoelectrochemical charge transfer. Surface-tethered ferrocene groups exhibit good electron-transfer characteristics with thermal rates estimated at >1000 s(-1). Time-resolved surface photovoltage measurements using a ruthenium terpyridyl coordination compound demonstrate photoelectron charge transfer on time scales of nanoseconds or less, limited by the laser pulse width. The results demonstrate that the CuAAC "click" reaction can be used to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) and other metal oxide semiconductors.


Assuntos
Compostos de Estanho/química , Catálise , Química Click , Complexos de Coordenação/química , Cobre/química , Técnicas Eletroquímicas , Compostos Ferrosos/química , Metalocenos , Nanopartículas/química , Rutênio/química , Semicondutores , Propriedades de Superfície
20.
J Am Chem Soc ; 133(15): 5692-4, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21438578

RESUMO

We demonstrate a modular "click"-based functionalization scheme that allows inexpensive conductive diamond samples to serve as an ultrastable platform for surface-tethered electrochemically active molecules stable out to ∼1.3 V vs Ag/AgCl. We have cycled surface-tethered Ru(tpy)(2) to this potential more than 1 million times with little or no degradation in propylene carbonate and only slightly reduced stability in water and acetonitrile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA