Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(6): e17292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38339833

RESUMO

Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Deleção de Genes , Malária Falciparum/genética , Malária/genética
2.
Nat Commun ; 14(1): 3699, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349311

RESUMO

Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Tanzânia/epidemiologia , Resistência a Medicamentos , Reação em Cadeia da Polimerase
3.
Genetics ; 222(2)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36000888

RESUMO

An essential step toward reconstructing pathogen transmission and answering epidemiologically relevant questions from genomic data is obtaining pairwise genetic distance between infections. For recombining organisms such as malaria parasites, relatedness measures quantifying recent shared ancestry would provide a meaningful distance, suggesting methods based on identity by descent (IBD). While the concept of relatedness and consequently an IBD approach is fairly straightforward for individual parasites, the distance between polyclonal infections, which are prevalent in malaria, presents specific challenges, and awaits a general solution that could be applied to infections of any clonality and accommodate multiallelic (e.g. microsatellite or microhaplotype) and biallelic [single nucleotide polymorphism (SNP)] data. Filling this methodological gap, we present Dcifer (Distance for complex infections: fast estimation of relatedness), a method for calculating genetic distance between polyclonal infections, which is designed for unphased data, explicitly accounts for population allele frequencies and complexity of infection, and provides reliable inference. Dcifer's IBD-based framework allows us to define model parameters that represent interhost relatedness and to propose corresponding estimators with attractive statistical properties. By using combinatorics to account for unobserved phased haplotypes, Dcifer is able to quickly process large datasets and estimate pairwise relatedness along with measures of uncertainty. We show that Dcifer delivers accurate and interpretable results and detects related infections with statistical power that is 2-4 times greater than that of approaches based on identity by state. Applications to real data indicate that relatedness structure aligns with geographic locations. Dcifer is implemented in a comprehensive publicly available software package.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Haplótipos , Modelos Genéticos
4.
Cogent Math Stat ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33043279

RESUMO

While unbiased central moment estimators of lower orders (such as a sample variance) are easily obtainable and often used in practice, derivation of unbiased estimators of higher orders might be more challenging due to long math and tricky combinatorics. Moreover, higher orders necessitate calculation of estimators of powers and products that also amount to these orders. We develop a software algorithm that allows the user to obtain unbiased estimators of an arbitrary order and provide results up to the 6th order, including powers and products of lower orders. The method also extends to finding pooled estimates of higher central moments of several different populations (e.g. for two-sample tests). We introduce an R package Umoments that calculates one- and two-sample estimates and generates intermediate results used to obtain these estimators.

5.
Int J Biostat ; 13(1)2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28599385

RESUMO

Multiple comparisons and small sample size, common characteristics of many types of "Big Data" including those that are produced by genomic studies, present specific challenges that affect reliability of inference. Use of multiple testing procedures necessitates calculation of very small tail probabilities of a test statistic distribution. Results based on large deviation theory provide a formal condition that is necessary to guarantee error rate control given practical sample sizes, linking the number of tests and the sample size; this condition, however, is rarely satisfied. Using methods that are based on Edgeworth expansions (relying especially on the work of Peter Hall), we explore the impact of departures of sampling distributions from typical assumptions on actual error rates. Our investigation illustrates how far the actual error rates can be from the declared nominal levels, suggesting potentially wide-spread problems with error rate control, specifically excessive false positives. This is an important factor that contributes to "reproducibility crisis". We also review some other commonly used methods (such as permutation and methods based on finite sampling inequalities) in their application to multiple testing/small sample data. We point out that Edgeworth expansions, providing higher order approximations to the sampling distribution, offer a promising direction for data analysis that could improve reliability of studies relying on large numbers of comparisons with modest sample sizes.


Assuntos
Probabilidade , Tamanho da Amostra , Estatística como Assunto , Reprodutibilidade dos Testes , Distribuições Estatísticas
6.
PLoS One ; 6(8): e24205, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912624

RESUMO

Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.


Assuntos
Benzeno/metabolismo , Genes Fúngicos/genética , Genômica , Fenóis/metabolismo , Fenóis/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Análise por Conglomerados , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Ferro/metabolismo , Lipídeos de Membrana/metabolismo , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/química , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA