Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260709

RESUMO

Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae , sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.

2.
Biology (Basel) ; 12(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508442

RESUMO

The overwhelming increase in the prevalence of obesity and related disorders in recent years is one of the greatest threats to the global healthcare system since it generates immense healthcare costs. As the prevalence of obesity approaches epidemic proportions, the importance of elucidating the mechanisms regulating appetite, satiety, body metabolism, energy balance and adiposity has garnered significant attention. Currently, gastrointestinal (GI) bariatric surgery remains the only approach capable of achieving successful weight loss. Appetite, satiety, feeding behavior, energy intake and expenditure are regulated by central and peripheral neurohormonal mechanisms that have not been fully elucidated yet. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Polypeptide (VIP) are members of a family of regulatory peptides that are widely distributed in parallel with their specific receptors, VPAC1R, VPAC2R and PAC1R, in the central nervous system (CNS) and in the periphery, such as in the gastrointestinal tract and its associated organs and immune cells. PACAP and VIP have been reported to play an important role in the regulation of body phenotype, metabolism and homeostatic functions. The purpose of this review is to present recent data on the effects of PACAP, VIP, VPAC1R, VPAC2R and PAC1R on the modulation of appetite, satiety, metabolism, calorie intake and fat accumulation, to evaluate their potential use as therapeutic targets for the treatment of obesity and metabolic syndrome.

3.
Biology (Basel) ; 11(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336804

RESUMO

Vasoactive Intestinal Peptide binds with high affinity to VPAC1R and VPAC2R, thus regulating key physiologic functions. Previously, we documented in VIP-/- mice a leaner body phenotype and altered metabolic hormones. Past reports described in VPAC2-/- mice impaired circadian rhythm, reduced food intake, and altered metabolism. To better define the effects of VPAC1R on body phenotype, energy/glucose homeostasis, and metabolism, we conducted a 12-week study in a VPAC1R null model. Our results reveal that VPAC1-/- mice experienced significant metabolic alterations during the dark cycle with greater numbers of feeding bouts (p = 0.009), lower Total Energy Expenditure (p = 0.025), VO2 (p = 0.029), and VCO2 (p = 0.016); as well as during the light cycle with lower Total Energy Expenditure (p = 0.04), VO2 (p = 0.044), and VCO2 (p = 0.029). Furthermore, VPAC1-/- mice had significantly higher levels of GLP-1 and PYY during fasting, and higher levels of GLP-1, glucagon leptin and PYY during postprandial conditions. In addition, VPAC1-/- mice had lower levels of glucose at 60' and 120', as assessed by insulin tolerance test. In conclusion, this study supports a key role for VPAC1R in the regulation of body glucose/energy homeostasis and metabolism.

4.
Mol Nutr Food Res ; 66(5): e2100730, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932869

RESUMO

SCOPE: The study tests the hypothesis that dietary pomegranate extract (PomX) supplementation attenuates colitis in a Western diet feed IL-10 deficient (IL-10-/-) murine model. METHODS AND RESULTS: Four-week-old male IL-10-/- mice are randomly assigned to a high fat high sucrose (HFHS) diet or a HFHS diet supplement with 0.25% PomX for 8 weeks. PomX supplementation lead to significantly lower histological score for colitis (2.6 ± 0.5 vs 3.9 ± 1.0), lower spleen weight (0.11 ± 0.01 vs 0.15 ± 0.02), and lower circulating Interleukin 6(IL-6) levels (15.8±2.2 vs 29.5±5.5) compared with HFHS fed controls. RNAseq analysis of colonic tissues showed 483 downregulated and 263 upregulated genes with PomX supplementation, which are mainly associated with inflammatory responses, defenses, and neutrophil degranulation. In addition, PomX treatment affects the cecal microbiome with increased alpha diversity, altered microbial composition, and increased levels of the tryptophan-related microbial metabolite indole propionate. CONCLUSION: The data demonstrate that dietary PomX supplementation ameliorated colitis and lowered inflammatory markers in HFHS fed IL-10-/- mice. These data support the anti-inflammatory effects of dietary PomX supplementation for IBD and a potential mediating role of gut microbiome, suggesting the need for future clinical studies to explore the use of PomX dietary supplementation in IBD patients.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Punica granatum , Animais , Masculino , Camundongos , Colite/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Interleucina-10/genética , Interleucina-6 , Camundongos Knockout , Extratos Vegetais/farmacologia , Sacarose/efeitos adversos
5.
Dig Dis Sci ; 65(8): 2254-2263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31729619

RESUMO

BACKGROUND: Kisspeptin is a neuropeptide that plays an integral role in the regulation of energy intake and reproduction by acting centrally on the hypothalamus-pituitary-gonadal axis. Our current study explores for the first time the effects of a pharmacological treatment of intraperitoneal kisspeptin-10 on murine feeding behavior, respirometry parameters, energy balance, and metabolic hormones. METHODS: Two groups (n = 16) of age- and sex-matched C57BL/6 wild-type adult mice were individually housed in metabolic cages and intraperitoneally injected with either kisspeptin-10 (2 nmol in 200 µl of saline) (10 µM) or vehicle before the beginning of a dark-phase cycle. Microstructure of feeding and drinking behavior, respirometry gases, respiratory quotient (RQ), total energy expenditure (TEE), metabolic hormones, oral glucose tolerance, and lipid profiles were measured. RESULTS: Intraperitoneal treatment with kisspeptin-10 caused a significant reduction in food intake, meal frequency, meal size, and eating rate. Kisspeptin-10 significantly decreased TEE during both the dark and light phase cycles, while also increasing the RQ during the dark-phase cycle. In addition, mice injected with kisspeptin-10 had significantly higher plasma levels of insulin (343.8 pg/ml vs. 106.4 pg/ml; p = 0.005), leptin (855.5 pg/ml vs. 173.1 pg/ml; p = 0.02), resistin (9411.1 pg/ml vs. 4116.5 pg/ml; p = 0.001), and HDL (147.6 mg/dl vs 97.1 mg/dl; p = 0.04). CONCLUSION: A pharmacological dose of kisspeptin-10 significantly altered metabolism by suppressing food intake, meal size, eating rate, and TEE while increasing the RQ. These changes were linked to increased levels of insulin, leptin, resistin, and HDL. The current results suggest that a peripheral kisspeptin treatment could alter metabolism and energy homeostasis by suppressing appetite, food intake, and fat accumulation.


Assuntos
Apetite/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hormônios Gastrointestinais/sangue , Kisspeptinas/administração & dosagem , Animais , HDL-Colesterol/sangue , Avaliação Pré-Clínica de Medicamentos , Feminino , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora
6.
J Mol Neurosci ; 67(1): 28-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30535790

RESUMO

Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide expressed both centrally and peripherally. CGRP has been shown to be involved in arteriolar dilation, cardiovascular regulation, pain transmission, migraine, and gastrointestinal physiology. Our current research is aimed at analyzing CGRP's impact on appetite/satiety, body metabolism, and energy homeostasis. Our study investigated the effects of a single-dose intraperitoneal (IP) treatment with CGRP on food and water consumption, energy expenditure, physical activity, respirometry, and a panel of plasma metabolic hormones in C57Bl/6 wild-type (WT) mice. After a CGRP IP injection at a dose of 2 nmol (10 µM CGRP in 200 µl of saline), a significant reduction in food intake and metabolic parameters as RQ, VCO2, and VO2 was observed. CGRP-injected mice had also significantly lower total energy expenditure (TEE) with no changes in activity levels compared to vehicle-injected controls. CGRP treatment in mice induced significantly lower plasma levels of glucagon and leptin but higher levels of amylin. Our data show that a single dose of CGRP peptide significantly decreased food consumption and altered calorimetric parameters and plasma metabolic hormone levels, thus confirming that CGRP plays a pivotal role in the regulation of appetite and metabolism. Future studies are necessary to analyze CGRP's long-term impact on body metabolism and its potential effects on appetite, obesity, and metabolic disorders.


Assuntos
Depressores do Apetite/farmacologia , Apetite , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Metabolismo Energético , Glucagon/sangue , Leptina/sangue , Animais , Depressores do Apetite/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Feminino , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Nutr ; 147(12): 2243-2251, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29070713

RESUMO

Background: High-protein diets (HPDs) recently have been used to obtain body weight and fat mass loss and expand muscle mass. Several studies have documented that HPDs reduce appetite and food intake.Objective: Our goal was to determine the long-term effects of an HPD on body weight, energy intake and expenditure, and metabolic hormones.Methods: Male C57BL/6 mice (8 wk old) were fed either an HPD (60% of energy as protein) or a control diet (CD; 20% of energy as protein) for 12 wk. Body composition and food intakes were determined, and plasma hormone concentrations were measured in mice after being fed and after overnight feed deprivation at several time points.Results: HPD mice had significantly lower body weight (in means ± SEMs; 25.73 ± 1.49 compared with 32.5 ± 1.31 g; P = 0.003) and fat mass (9.55% ± 1.24% compared with 15.78% ± 2.07%; P = 0.05) during the first 6 wk compared with CD mice, and higher lean mass throughout the study starting at week 2 (85.45% ± 2.25% compared with 75.29% ± 1.90%; P = 0.0001). Energy intake, total energy expenditure, and respiratory quotient were significantly lower in HPD compared with CD mice as shown by cumulative energy intake and eating rate. Water vapor was significantly higher in HPD mice during both dark and light phases. In HPD mice, concentrations of leptin [feed-deprived: 41.31 ± 11.60 compared with 3041 ± 683 pg/mL (P = 0.0004); postprandial: 112.5 ± 102.0 compared with 8273 ± 1415 pg/mL (P < 0.0001)] and glucagon-like peptide 1 (GLP-1) [feed-deprived: 5.664 ± 1.44 compared with 21.31 ± 1.26 pg/mL (P = <0.0001); postprandial: 6.54 ± 2.13 compared with 50.62 ± 11.93 pg/mL (P = 0.0037)] were significantly lower, whereas postprandial glucagon concentrations were higher than in CD-fed mice.Conclusions: In male mice, the 12-wk HPD resulted in short-term body weight and fat mass loss, but throughout the study preserved body lean mass and significantly reduced energy intake and expenditure as well as leptin and GLP-1 concentrations while elevating postprandial glucagon concentrations. This study suggests that long-term use of HPDs may be an effective strategy to decrease energy intake and expenditure and to maintain body lean mass.


Assuntos
Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proteínas Alimentares/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucagon/sangue , Leptina/sangue , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Ingestão de Líquidos , Esquema de Medicação , Ingestão de Alimentos , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Mol Neurosci ; 59(2): 203-10, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26646243

RESUMO

Inflammatory bowel disease (IBD) constitutes an important clinically significant condition that results in morbidity and mortality. IBD can be generally classified into either ulcerative colitis (UC) or Crohn's disease (CD) that differs in the clinical and histopathology. The role of neuropeptides in the pathogenesis of these conditions is becoming increasingly recognized for their importance in modulating the inflammatory state. Animal models provide the greatest insight to better understand the pathophysiology of both disorders which will hopefully allow for improved treatment strategies. This review will provide a better understanding of the role of murine models for studying colitis.


Assuntos
Colite Ulcerativa/genética , Neuropeptídeos/metabolismo , Animais , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Deleção de Genes , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Neuropeptídeos/genética , Ácido Trinitrobenzenossulfônico/toxicidade
9.
Am J Physiol Gastrointest Liver Physiol ; 309(10): G816-25, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26336928

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is expressed within the gastroenteric system, where it has profound physiological effects. PACAP was shown to regulate food intake and thermogenesis centrally; however, PACAP peripheral regulation of appetite and feeding behavior is unknown. Therefore, we studied PACAP's effect on appetite and food intake control by analyzing feeding behavior and metabolic hormones in PAC1-deficient (PAC1-/-) and age-matched wild-type (WT) mice intraperitoneally injected with PACAP1-38 or PACAP1-27 before the dark phase of feeding. Food intake and feeding behavior were analyzed using the BioDAQ system. Active ghrelin, glucagon-like peptide-1 (GLP-1), leptin, peptide YY, pancreatic polypeptide, and insulin were measured following PACAP1-38 administration in fasted WT mice. PACAP1-38/PACAP1-27 injected into WT mice significantly decreased in a dose-dependent manner cumulative food intake and reduced bout and meal feeding parameters. Conversely, PACAP1-38 injected into PAC1-/- mice failed to significantly change food intake. Importantly, PACAP1-38 reduced plasma levels of active ghrelin compared with vehicle in WT mice. In PAC1-/- mice, fasting levels of active ghrelin, GLP-1, insulin, and leptin and postprandial levels of active ghrelin and insulin were significantly altered compared with levels in WT mice. Therefore, PAC1 is a novel regulator of appetite/satiety. PACAP1-38/PACAP1-27 significantly reduced appetite and food intake through PAC1. In PAC1-/- mice, the regulation of anorexigenic/orexigenic hormones was abolished, whereas active ghrelin remained elevated even postprandially. PACAP significantly reduced active ghrelin in fasting conditions. These results establish a role for PACAP via PAC1 in the peripheral regulation of appetite/satiety and suggest future studies to explore a therapeutic use of PACAP or PAC1 agonists for obesity treatment.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Grelina , Leptina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Relação Dose-Resposta a Droga , Comportamento Alimentar , Trato Gastrointestinal/metabolismo , Grelina/antagonistas & inibidores , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Injeções Intraperitoneais , Masculino , Camundongos , Modelos Animais , Neurotransmissores/administração & dosagem , Neurotransmissores/farmacocinética , Peptídeo YY/sangue , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacocinética
10.
J Mol Neurosci ; 56(2): 377-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904310

RESUMO

Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP -/-) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP-/- mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP-/- mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat mass accumulation. Therefore, VIP signaling is critical for the modulation of appetite/satiety and body mass phenotype and is a potential target for future treatment of obesity.


Assuntos
Apetite , Composição Corporal , Peptídeo Intestinal Vasoativo/metabolismo , Adiponectina/sangue , Animais , Metabolismo Energético , Comportamento Alimentar , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Pancreático/sangue , Peptídeo YY/sangue , Peptídeo Intestinal Vasoativo/genética
11.
J Mol Neurosci ; 52(1): 37-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24395090

RESUMO

VIP is highly expressed in the colon and regulates motility, vasodilatation, and sphincter relaxation. However, its role in the development and progress of colitis is still controversial. Our aim was to determine the participation of VIP on dextran sodium sulfate (DSS)-induced colonic mucosal inflammation using VIP(-/-) and WT mice treated with VIP antagonists. Colitis was induced in 32 adult VIP(-/-) and 14 age-matched WT litter-mates by giving 2.5 % DSS in the drinking water. DSS-treated WT mice were injected daily with VIP antagonists, VIPHyb (n = 22), PG 97-269 (n = 9), or vehicle (n = 31). After euthanasia, colons were examined; colonic cytokines mRNA were quantified. VIP(-/-) mice were remarkably resistant to DSS-induced colitis compared to WT. Similarly, DSS-treated WT mice injected with VIPHyb (1 µM) or PG 97-269 (1 nM) had significantly reduced clinical signs of colitis. Furthermore, colonic expression of IL-1ϐ, TNF-α, and IL-6 was significantly lower in VIP(-/-) and VIPHyb or PG 97-269 compared to vehicle-treated WT. Genetic deletion of VIP or pharmacological inhibition of VIP receptors resulted in resistance to colitis. These data demonstrate a pro-inflammatory role for VIP in murine colitis and suggest that VIP antagonists may be an effective clinical treatment for human inflammatory bowel diseases.


Assuntos
Colite/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Neurotensina/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Deleção de Genes , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotensina/genética , Neurotensina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/uso terapêutico
12.
Peptides ; 32(11): 2340-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22041110

RESUMO

Ghrelin is a 28 amino acid peptide, primarily produced by the oxyntic mucosa X/A like neuroendocrine cells in the stomach. It is also found in the small intestine, hypothalamus, pituitary gland, pancreas, heart, adipose tissue, and immune system. In gastrointestinal neuroendocrine tumors (NETs) ghrelin release has been well documented. Ghrelin is a brain-gut circuit peptide with an important role in the physiological regulation of appetite, response to hunger and starvation, metabolic and endocrine functions as energy expenditure, gastric motility and acid secretion, insulin secretion and glucose homeostasis, as well as in the potential connection to the central nervous system. Recently, there has been a significant interest in the biological effects of ghrelin in NETs. In this article, we present a comprehensive review of ghrelin's expression and a brief summary of ghrelin's physiological role in NETs patients with carcinoids, type A chronic atrophic gastritis (CAG), with or without MEN-1, and with and without liver metastases. We hope, with the research reviewed here, to offer compelling evidence of the potential significance of ghrelin in NETs, as well as to provide a useful guide to the future work in this area.


Assuntos
Tumor Carcinoide/sangue , Gastrite Atrófica/sangue , Neoplasias Gastrointestinais/sangue , Regulação Neoplásica da Expressão Gênica , Grelina/biossíntese , Neoplasias Hepáticas/sangue , Neoplasia Endócrina Múltipla Tipo 1/sangue , Acilação , Regulação do Apetite/fisiologia , Peso Corporal , Tumor Carcinoide/patologia , Sistema Nervoso Central/metabolismo , Doença Crônica , Mucosa Gástrica/metabolismo , Gastrite Atrófica/patologia , Neoplasias Gastrointestinais/patologia , Grelina/genética , Grelina/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Hepáticas/secundário , Masculino , Neoplasia Endócrina Múltipla Tipo 1/patologia , Reação em Cadeia da Polimerase , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
13.
J Mol Neurosci ; 43(1): 76-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20821075

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to increase the histamine release from gastric enterochromaffin-like (ECL) cells and promote gastric acid secretion in rats. In contrast, in mice, PACAP has been demonstrated to induce a decrease of gastric acid secretion, an effect presumably due to somatostatin release. To more clearly define the role of PACAP in the regulation of gastric acid output, a knockout mouse model for the PACAP-specific receptor PAC1 was applied in this study. Measurements of the basal and stimulated gastric acid secretion and morphological studies on the gastric mucosa were performed in both wild-type and PAC1-deficient mice. Compared with the wild-type mice, the PAC1-deficient mice showed a nearly threefold higher basal gastric acid output, increased gastric mucosa thickness and glands height, and proportional increases in parietal and total cell counts in the gastric mucosa. The PAC1-deficient mice also showed a trend of increased plasma gastrin levels and gastrin gene expression in the gastric mucosa. This study indicates that the expression of PAC1 is clearly important for maintaining the homeostasis of gastric acid secretion. Loss of PACAP receptor during development may lead to a compensatory mechanism regulating gastric acid secretion.


Assuntos
Ácido Gástrico/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Hipertrofia/patologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Animais , Biomarcadores/metabolismo , Gastrinas/sangue , Gastrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-20936183

RESUMO

Autologous epidermal cell cultures (CEA) represent a possibility to treat extensive burn lesions, since they allow a significative surface expansion which cannot be achieved with other surgical techniques based on autologous grafting. Moreover currently available CEA preparations are difficult to handle and their take rate is unpredictable. This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD) and CEA to overcome these difficulties. A procedure that maintained an intact basement membrane was developed, so as to promote adhesion and growth of CEA on AAGD. Keratinocytes were seeded onto AAGD and cultured up to 21 days. Viability tests and immunohistochemical analysis with specific markers were carried out at 7, 14, and 21 days, to evaluate keratinocyte adhesion, growth, and maturation. Our results support the hypothesis that this newly formed skin substitute could allow its permanent engraftment in clinical application.


Assuntos
Materiais Biocompatíveis , Queratinócitos , Teste de Materiais , Pele Artificial , Membrana Basal/citologia , Membrana Basal/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glicerol , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Alicerces Teciduais/química
15.
J Mol Neurosci ; 39(3): 391-401, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19701709

RESUMO

Neuroendocrine tumors, although rare, are currently diagnosed with increasing frequency, owing to improved imaging techniques and a greater clinical awareness of this condition. To date, BON is a very well established and characterized human pancreatic neuroendocrine tumor cell line used to study the signal transduction and genetic regulation of neuroendocrine tumors secretion and growth. The secretory activity of BON cells is known to release peptides, such as chromogranin A, neurotensin, and biogenic amines, as 5-HT, permitting an assessment of their biological activity. The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP), released from the enteric neurons in the gastrointestinal tract by binding to its high affinity receptor PAC1, has been previously shown to regulate the secretory activity and growth of the neuroendocrine-derived enterochromaffin-like cells in the stomach. This led us to speculate that PACAP might also play an important role in regulating the growth of human neuroendocrine tumors. Accordingly, in the current study, we have shown that BON cells express PAC1 receptors, which are rapidly internalized upon PACAP activation. Furthermore, PAC1 receptor activation, in BON cells, couple to intracellular Ca(2+) as well as cAMP responses and induce the release of intracellular 5-HT, activate mitogen activated protein kinases, and stimulate cellular growth. These data indicate that PACAP functionally can stimulate 5-HT release and promote the growth of the BON neuroendocrine tumor cell line. Therefore, PACAP and its receptors regulate neuroendocrine tumor secretory activity and growth in vivo, and this knowledge will permit the development of novel diagnostic and therapeutic targets for managing neuroendocrine tumors in humans.


Assuntos
Carcinoma Neuroendócrino/metabolismo , Neoplasias Pancreáticas/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Carcinoma Neuroendócrino/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Endocitose/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias Pancreáticas/fisiopatologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Mol Neurosci ; 26(1): 85-97, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15968088

RESUMO

The gastric enterochromaffin-like (ECL) cell plays a major role in the regulation of gastric acid secretion. We have previously described that Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is present on myenteric neurons in the rat and colocalizes with its high-affinity receptor, PAC1, expressed on the surface of gastric ECL cells. The study of ECL cell physiology has been hampered by the inability to isolate and purify ECL cells to homogeneity. Density gradient elutriation alone yields only 65-70% purity of ECL cells. In the present study, we used fluorescence-activated cell sorting (FACS) with a novel fluorescent ligand, Fluor-PACAP-38, for isolating pure ECL cells. FACS was used to isolate ECL cells based on their relatively small size, low density, and ability to bind the fluorescent ligand Fluor-PACAP-38. The sorted cells were unambiguously identified as ECL cells by immunohistochemical analysis using anti-PACAP type-I (PAC1), anti-histidine decarboxylase (HDC), and anti-somatostatin antibodies. Further confocal microscopy demonstrated that Fluor-PACAP-38, a ligand with a higher affinity for PAC1, bound to extracellular receptors of these FACS-purified cells. FACS yielded an average of 2 million ECL cells/4 rat stomachs, and >99% of the sorted cells were positive for PAC1 receptor and HDC expression. The absence of immunohistochemical staining for somatostatin indicated lack of contamination by gastric D cells, which are similar in size and shape to the ECL cells. Internalization of PACAP receptors and a rapid Ca2+ response in purified ECL cells were observed upon PACAP activation, suggesting that these cells are viable and biologically active. These ECL cells demonstrated a dose-dependent stimulation of proliferation in response to PACAP, with a maximum of 30% proliferation at a concentration of 10-7 M. Microarray studies were perfor med to confirm the expression of genes specific for ECL cells. These results demonstrate that rat gastric ECL cells can be isolated to homogeneity by using a combination of density gradient centrifugation, followed by cell sorting using Fluor-PACAP. These techniques now allow microarray studies to be performed in ECL cells to characterize their functional gene expression and will facilitate pharmacological, biochemical, and molecular studies on ECL cell function.


Assuntos
Divisão Celular/efeitos dos fármacos , Células Enterocromafins/metabolismo , Mucosa Gástrica/metabolismo , Fatores de Crescimento Neural/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Animais , Sinalização do Cálcio , Citometria de Fluxo , Ácido Gástrico/metabolismo , Regulação da Expressão Gênica , Fatores de Crescimento Neural/genética , Neuropeptídeos/genética , Neurotransmissores/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Ratos Sprague-Dawley
17.
J Mol Neurosci ; 22(1-2): 83-92, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14742913

RESUMO

PAC1 is a recently cloned and characterized heptahelical, G protein-coupled receptor with high affinity to PACAP-27 and PACAP-38 and is differentially coupled to activate intracellular Ca2+ and cAMP. PAC1 is expressed as four major splice variants, each possessing differential coupling to inositol phosphates and intracellular Ca2+. PAC1 has been shown previously to be expressed and regulate the growth and proliferation of nonsquamous cell lung cancer cells, as well as breast cancer cell lines. PAC1 is expressed on the HCT8 human colon cancer cell line and is coupled to the activation of both intracellular cAMP and Ca2+ with consequent stimulation of growth. In the current study, we contrast the effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on the HCT8 colon cancer cell lines to the HCT116 and FET cell lines wherein PAC1 is expressed as the SV1 or HIP splice variant and is coupled to the activation only of cAMP but not of intracellular Ca2+. These data indicate that human colon tumor cells express PAC1 and are differentially coupled to intracellular signal transduction molecules. The ability to activate both cAMP and Ca2+ appears to be a prerequisite for activation of tumor proliferation, indicating a potentially important factor in how PACAP potentiates the growth of certain tumors.


Assuntos
Sinalização do Cálcio/fisiologia , Carcinoma/genética , Neoplasias do Colo/genética , AMP Cíclico/metabolismo , Neuropeptídeos/metabolismo , Receptores do Hormônio Hipofisário/genética , Adenilil Ciclases/metabolismo , Processamento Alternativo/genética , Cálcio/metabolismo , Carcinoma/metabolismo , Carcinoma/fisiopatologia , Divisão Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Humanos , Líquido Intracelular/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores do Hormônio Hipofisário/metabolismo
18.
Regul Pept ; 109(1-3): 115-25, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12409223

RESUMO

The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1) is a heptahelical, G protein-coupled receptor that has been shown to be expressed by non-squamous lung cancer and breast cancer cell lines, and to be coupled to the growth of these tumors. We have previously shown that PACAP and its receptor, PAC1, are expressed in rat colonic tissue. In this study, we used polyclonal antibodies directed against the COOH terminal of PAC1, as well as fluorescently labeled PACAP, Fluor-PACAP, to demonstrate the expression of PAC1 on HCT8 human colonic tumor cells, using FACS analysis and confocal laser scanning microscopy. Similarly, anti-PACAP polyclonal antibodies were used to confirm the expression of PACAP hormone by this cell line. We then investigated the signal transduction properties of PAC1 in these tumor cells. PACAP-38 elevated intracellular cAMP levels in a dose-dependent manner, with a half-maximal (EC(50)) stimulation of approximately 3 nM. In addition, PACAP-38 stimulation caused an increase in cytosolic Ca(2+) concentration [Ca(2+)](i), which was partially inhibited by the PACAP antagonist, PACAP-(6-38). Finally, we studied the potential role of PACAP upon the growth of these tumor cells. We found that PACAP-38, but not VIP, increased the number of viable HCT8 cells, as measured by MTT activity. We also demonstrated that HCT8 cells expressed the Fas receptor (Fas-R/CD95), which was subsequently down-regulated upon activation with PACAP-38, further suggesting a possible role for PACAP in the growth and survival of these tumor cells. These data indicate that HCT8 human colon tumor cells express PAC1 and produce PACAP hormone. Furthermore, PAC1 activation is coupled to adenylate cyclase, increase cytosolic [Ca(2+)](i), and cellular proliferation. Therefore, PACAP is capable of increasing the number of viable cells and regulating Fas-R expression in a human colonic cancer cell line, suggesting that PACAP might play a role in the regulation of colon cancer growth and modulation of T lymphocyte anti-tumoral response via the Fas-R/Fas-L apoptotic pathway.


Assuntos
Proteínas de Bactérias , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neuropeptídeos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Apoptose , Cálcio/metabolismo , Divisão Celular/efeitos dos fármacos , Regulação para Baixo , Proteína Ligante Fas , Citometria de Fluxo , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
19.
Regul Pept ; 105(3): 145-54, 2002 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-11959368

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to regulate gastric acid secretion and intestinal motility. In the present study, the pattern of distribution of PACAP and PACAP type 1 receptor (PAC1) immunoreactivities were examined in the rat stomach and distal colon using a specific polyclonal antibody raised against rat/human PAC1. Western blot of the membrane preparations of NIH/3T3 cells transfected with the human PAC1 obtained by using rabbit polyclonal anti-PAC1 antibody showed a protein band with a molecular mass of approximately 50 kDa. NIH/3T3 cells transfected with the human PAC1 and incubated with the anti-PAC1 antibody displayed surface cell-type immunoreactivity, which was internalized following ligand exposure. In gastric or colonic longitudinal muscle/myenteric plexus (LMMP) whole mount preparations as well as cryostat sections, PACAP immunoreactivity was observed in cell bodies within the myenteric ganglia and nerve fibers in the muscle layers and mucosa. PAC1 immunoreactivity was confined mainly on the surface of the nerve cells. PACAP and PAC1 immunoreactivities showed a similar pattern of distribution in gastric and colonic tissues. Adjacent sections or LMMP whole mount preparations labeled with protein gene product 9.5 (PGP 9.5) revealed the neuronal identity of myenteric cells bearing PAC1. The neuronal localization of PACAP and PAC1 receptors supports their role in the neural regulation of gastric acid secretion and gastrointestinal motor function.


Assuntos
Colo/química , Colo/inervação , Sistema Nervoso Entérico/química , Mucosa Gástrica/química , Mucosa Gástrica/inervação , Neurônios/química , Neuropeptídeos/análise , Receptores do Hormônio Hipofisário/análise , Células 3T3 , Animais , Western Blotting , Sistema Nervoso Entérico/citologia , Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Plexo Mientérico/química , Plexo Mientérico/citologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Tioléster Hidrolases/análise , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA