RESUMO
Open-conduit basaltic volcanoes can be characterised by sudden large explosive events (paroxysms) that interrupt normal effusive and mild explosive activity. In June-August 2019, one major explosion and two paroxysms occurred at Stromboli volcano (Italy) within only 64 days. Here, via a multifaceted approach using clinopyroxene, we show arrival of mafic recharges up to a few days before the onset of these events and their effects on the eruption pattern at Stromboli, as a prime example of a persistently active, open-conduit basaltic volcano. Our data indicate a rejuvenated Stromboli plumbing system where the extant crystal mush is efficiently permeated by recharge magmas with minimum remobilisation promoting a direct linkage between the deeper and the shallow reservoirs that sustains the currently observed larger variability of eruptive behaviour. Our approach provides vital insights into magma dynamics and their effects on monitoring signals demonstrating the power of petrological studies in interpreting patterns of surficial activity.
RESUMO
The Rum Eastern Layered Intrusion (ELI; Scotland) is an open-system layered intrusion constructed of 16 macro-rhythmic units. Each of the macro-rhythmic units consists of a peridotite base and a troctolite (± gabbro) top, previously attributed to the fractional crystallisation of a single magma batch. This classic paradigm has been challenged, however, with evidence presented for the emplacement of peridotite sills in Units 9, 10, and 14, such as cross-cutting relationships, upward-oriented apophyses, and lateral discontinuities. To test whether the other major peridotites within the ELI represent sills, we have carried out new field, petrographic, and mineral chemical analyses of the peridotites in Units 7, 8 and 9. The peridotites display large- and small-scale cross-cutting relationships with the overlying troctolite, indicative of an intrusive relationship. The peridotites also show large-scale coalescence and lateral spatial discontinuities such that the ELI unit divisions become arbitrary. Harrisite layers and Cr-spinel seams found throughout Units 7, 8, and 9 suggest the peridotites were constructed incrementally via repeated injections of picritic magma. Our observations allow for distinct subtypes of peridotite to be defined, separated by intrusive contacts, allowing for their relative chronology to be determined. Older, poikilitic peridotite, rich in clinopyroxene, is truncated by younger, well-layered peridotite, containing abundant harrisite layers. In addition to the new peridotite subtypes defined in this study, we find strong evidence for laterally oriented metasomatism within clinopyroxene-rich wehrlites at the top of the Unit 8 peridotite. The wehrlites and surrounding peridotites record a complex series of metasomatic reactions that transformed thin picrite sills into clinopyroxene-rich wehrlites without any evidence for the sort of vertical melt movement typically posited in layered intrusions. The observations presented in this study from the ELI cannot be reconciled with the classic magma chamber paradigm and are better explained by the emplacement of composite sills into pre-existing feldspathic cumulate (gabbro or troctolite). The evidence for sill emplacement presented here suggests that the layered complex was constructed by a combination of sill emplacement and metasomatism, forming many of the unusual (often clinopyroxene-rich) lithologies that surround the sills. The broad-scale formation of the layered peridotites via incremental sill emplacement, suggested by the occurrence of upward-oriented apophyses, coalescence, and lateral discontinuity, could be applied to much larger ultramafic intrusions, which might have formed by similar mechanisms.
RESUMO
Interaction between magma and crustal carbonate at active arc volcanoes has recently been proposed as a source of atmospheric CO2, in addition to CO2 released from the mantle and subducted oceanic crust. However, quantitative constraints on efficiency and timing of these processes are poorly established. Here, we present the first in situ carbon and oxygen isotope data of texturally distinct calcite in calc-silicate xenoliths from arc volcanics in a case study from Merapi volcano (Indonesia). Textures and C-O isotopic data provide unique evidence for decarbonation, magma-fluid interaction, and the generation of carbonate melts. We report extremely light δ13CPDB values down to -29.3 which are among the lowest reported in magmatic systems so far. Combined with the general paucity of relict calcite, these extremely low values demonstrate highly efficient remobilisation of crustal CO2 over geologically short timescales of thousands of years or less. This rapid release of large volumes of crustal CO2 may impact global carbon cycling.
RESUMO
During the Late Bronze Age, the island of Santorini had a semi-closed caldera harbour inherited from the 22 ka Cape Riva Plinian eruption, and a central island referred to as 'Pre-Kameni' after the present-day Kameni Islands. Here, the size and age of the intracaldera island prior to the Late Bronze Age (Minoan) eruption are constrained using a photo-statistical method, complemented by granulometry and high-precision K-Ar dating. Furthermore, the topography of Late Bronze Age Santorini is reconstructed by creating a new digital elevation model (DEM). Pre-Kameni and other parts of Santorini were destroyed during the 3.6 ka Minoan eruption, and their fragments were incorporated as lithic clasts in the Minoan pyroclastic deposits. Photo-statistical analysis and granulometry of these lithics, differentiated by lithology, constrain the volume of Pre-Kameni to 2.2-2.5 km3. Applying the Cassignol-Gillot K-Ar dating technique to the most characteristic black glassy andesite lithics, we propose that the island started to grow at 20.2 ± 1.0 ka soon after the Cape Riva eruption. This implies a minimum long-term lava extrusion rate of ~0.13-0.14 km3/ky during the growth of Pre-Kameni.
RESUMO
Transitions between explosive and effusive activity are commonly observed during dome-forming eruptions and may be linked to factors such as magma influx, ascent rate and degassing. However, the interplay between these factors is complex and the resulting eruptive behaviour often unpredictable. This paper focuses on the driving forces behind the explosive and effusive activity during the well-documented 2010 eruption of Merapi, the volcano's largest eruption since 1872. Time-controlled samples were collected from the 2010 deposits, linked to eruption stage and style of activity. These include scoria and pumice from the initial explosions, dense and scoriaceous dome samples formed via effusive activity, as well as scoria and pumice samples deposited during subplinian column collapse. Quantitative textural analysis of groundmass feldspar microlites, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size distribution analysis, reveal that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. High-An (up to â¼80 mol% An) microlites from early erupted samples reveal that the eruption was likely preceded by an influx of hotter or more mafic magma. Transitions between explosive and effusive activity in 2010 were driven primarily by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in cycles of effusive and explosive activity. Explosivity during the 2010 eruption was enhanced by the presence of a 'plug' of cooled magma within the shallow magma plumbing system, which acted to hinder degassing, leading to overpressure prior to initial explosive activity.