Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 33(16): 3522-3528.e7, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37516114

RESUMO

Cytoplasmic linker-associated proteins (CLASPs) form a conserved family of microtubule-associated proteins (MAPs) that maintain microtubules in a growing state by promoting rescue while suppressing catastrophe.1 CLASP function involves an ordered array of tumor overexpressed gene (TOG) domains and binding to multiple protein partners via a conserved C-terminal domain (CTD).2,3 In migrating cells, CLASPs concentrate at the cortex near focal adhesions as part of cortical microtubule stabilization complexes (CMSCs), via binding of their CTD to the focal adhesion protein PHLDB2/LL5ß.4,5 Cortical CLASPs also stabilize a subset of microtubules, which stimulate focal adhesion turnover and generate a polarized microtubule network toward the leading edge of migrating cells. CLASPs are also recruited to the trans-Golgi network (TGN) via an interaction between their CTD and the Golgin protein GCC185.6 This allows microtubule growth toward the leading edge of migrating cells, which is required for Golgi organization, polarized intracellular transport, and cell motility.7 In dividing cells, CLASPs are essential at kinetochores for efficient chromosome segregation and anaphase spindle integrity.8,9 Both CENP-E and ASTRIN bind and target CLASPs to kinetochores,10,11 although the CLASP domain required for this interaction is not known. Despite its high evolutionary conservation, the CTD remains structurally uncharacterized. Here, we find that the CTD can be structurally modeled as a TOG domain. We identify a surface-exposed and conserved arginine residue essential for CLASP CTD interaction with partner proteins. Together, our results provide a structural mechanism by which the CLASP CTD directs diverse sub-cellular localizations throughout the cell cycle.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Movimento Celular , Cinetocoros/metabolismo , Rede trans-Golgi/metabolismo
2.
Elife ; 122023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36799894

RESUMO

During cell division, chromosome segregation is orchestrated by a microtubule-based spindle. Interaction between spindle microtubules and kinetochores is central to the bi-orientation of chromosomes. Initially dynamic to allow spindle assembly and kinetochore attachments, which is essential for chromosome alignment, microtubules are eventually stabilized for efficient segregation of sister chromatids and homologous chromosomes during mitosis and meiosis I, respectively. Therefore, the precise control of microtubule dynamics is of utmost importance during mitosis and meiosis. Here, we study the assembly and role of a kinetochore module, comprised of the kinase BUB-1, the two redundant CENP-F orthologs HCP-1/2, and the CLASP family member CLS-2 (hereafter termed the BHC module), in the control of microtubule dynamics in Caenorhabditis elegans oocytes. Using a combination of in vivo structure-function analyses of BHC components and in vitro microtubule-based assays, we show that BHC components stabilize microtubules, which is essential for meiotic spindle formation and accurate chromosome segregation. Overall, our results show that BUB-1 and HCP-1/2 do not only act as targeting components for CLS-2 at kinetochores, but also synergistically control kinetochore-microtubule dynamics by promoting microtubule pause. Together, our results suggest that BUB-1 and HCP-1/2 actively participate in the control of kinetochore-microtubule dynamics in the context of an intact BHC module to promote spindle assembly and accurate chromosome segregation in meiosis.


Assuntos
Proteínas de Caenorhabditis elegans , Fuso Acromático , Animais , Fuso Acromático/genética , Microtúbulos , Meiose , Cinetocoros , Caenorhabditis elegans/genética , Segregação de Cromossomos , Mitose , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Caenorhabditis elegans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA