Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
RSC Adv ; 14(21): 14973-14981, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38737649

RESUMO

New semiconductors containing fluorene or fluorenone central fragments along with phosphonic acid anchoring groups were synthesized and investigated as electron transporting materials for possible application in photovoltaic devices. These derivatives demonstrate good thermal stability and suitable electrochemical properties for effective electron transport from perovskite, Sb2S3 and Sb2Se3 absorber layers. Self-assembled fluorene and fluorenone electron-transporting materials have shown improved substrate wettability, indicating bond formation between monolayer-forming compounds and the ITO, TiO2, Sb2S3, or Sb2Se3 surface. Additionally, investigated materials have compatible energetic band alignment and can passivate perovskite interface defects, which makes them interesting candidates for application in the n-i-p structure perovskite solar cell.

2.
R Soc Open Sci ; 11(5): 232019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721131

RESUMO

The search for novel classes of hole-transporting materials (HTMs) is a very important task in advancing the commercialization of various photovoltaic devices. Meeting specific requirements, such as charge-carrier mobility, appropriate energy levels and thermal stability, is essential for determining the suitability of an HTM for a given application. In this work, two spirobisindane-based compounds, bearing terminating hole transporting enamine units, were strategically designed and synthesized using commercially available starting materials. The target compounds exhibit adequate thermal stability; they are amorphous and their glass-transition temperatures (>150°C) are high, which minimizes the probability of direct layer crystallization. V1476 stands out with the highest zero-field hole-drift mobility, approaching 1 × 10-5 cm2 V s-1. To assess the compatibility of the highest occupied molecular orbital energy levels of the spirobisindane-based HTMs in solar cells, the solid-state ionization potential (Ip) was measured by the electron photoemission in air of the thin-film method. The favourable morphological properties, energy levels and hole mobility in combination with a simple synthesis make V1476 and related compounds promising materials for HTM applications in antimony-based solar cells and triple-cation-based perovskite solar cells.

3.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731400

RESUMO

Energy-level alignment is a crucial factor in the performance of thin-film devices, such as organic light-emitting diodes and photovoltaics. One way to adjust these energy levels is through chemical modification of the molecules involved. However, this approach may lead to unintended changes in the optical and/or electrical properties of the compound. An alternative method for energy-level adjustment at the interface is the use of self-assembling monolayers (SAMs). Initially, SAMs with passive spacers were employed, creating a surface dipole moment that altered the work function (WF) of the electrode. However, recent advancements have led to the synthesis of SAM molecules with active spacers. This development necessitates considering not only the modification of the electrode's WF but also the ionization energy (IE) of the molecule itself. To measure both the IE of SAM molecules and their impact on the electrode's WF, a relatively simple method is photo-electric emission spectroscopy. Solar cell performance parameters have a higher correlation coefficient with the ionization energy of SAM molecules with carbazole derivatives as spacers (up to 0.97) than the work function of the modified electrode (up to 0.88). Consequently, SAMs consisting of molecules with active spacers can be viewed as hole transport layers rather than interface layers.

4.
ACS Appl Mater Interfaces ; 16(6): 7310-7316, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38317431

RESUMO

Molecular hole-transporting materials (HTMs) having triphenylethylene central core were designed, synthesized, and employed in perovskite solar cell (PSC) devices. The synthesized HTM derivatives were obtained in a two- or three-step synthetic procedure, and their characteristics were analyzed by various thermoanalytical, optical, photophysical, and photovoltaic techniques. The most efficient PSC device recorded a 23.43% power conversion efficiency. Furthermore, the longevity of the device employing V1509 HTM surpassed that of PSC with state-of-art spiro-OMeTAD as the reference HTM.

5.
RSC Adv ; 14(5): 2975-2982, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239447

RESUMO

Air-stable and solution-processable fluorene-based bipolar charge transporting materials (CTMs) were designed, synthesized, and analyzed. These CTMs feature anthraquinone, 9-fluorenone, and 9-dicyanofluorenylidine groups and exhibit good film formation properties for solvent processing. Quantum chemistry simulations and optical absorption measurements proved that several stable conformers and charge transfer complexes form inside the molecules. Hole mobilities in CTMs were around 10-4 to 10-5 cm2 V-1 s-1, while electron mobility in compounds with anthraquinone and 9-dicyanofluorenylidine groups was approximately one order of magnitude lower.

6.
ACS Appl Mater Interfaces ; 16(1): 1206-1216, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117238

RESUMO

A novel 9,9'-spirobifluorene derivative bearing thermally cross-linkable vinyl groups (V1382) was developed as a hole-transporting material for perovskite solar cells (PSCs). After thermal cross-linking, a smooth and solvent-resistant three-dimensional (3D) polymeric network is formed such that orthogonal solvents are no longer needed to process subsequent layers. Copolymerizing V1382 with 4,4'-thiobisbenzenethiol (dithiol) lowers the cross-linking temperature to 103 °C via the facile thiol-ene "click" reaction. The effectiveness of the cross-linked V1382/dithiol was demonstrated both as a hole-transporting material in p-i-n and as an interlayer between the perovskite and the hole-transporting layer in n-i-p PSC devices. Both devices exhibit better power conversion efficiencies and operational stability than devices using conventional PTAA or Spiro-OMeTAD hole-transporting materials.

7.
RSC Adv ; 13(38): 26933-26939, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692345

RESUMO

Perovskite solar cells are among the most promising photovoltaic technologies in academia and have the potential to become commercially available in the near future. However, there are still a few unresolved issues regarding device lifetime and fabrication cost of perovskite solar cells in order to be competitive with existing technologies. Herein, we report small organic molecules with introduced vinyl groups as hole transporting materials, which are capable of undergoing thermal polymerization, forming solvent-resistant 3D networks. Novel compounds have been synthesized from relatively inexpensive starting materials and their purification is less time-consuming when compared to polymers; therefore this type of hole transporter can be a promising alternative to lower the manufacturing cost of perovskite solar cells.

8.
Chem Mater ; 35(15): 5914-5923, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576588

RESUMO

A group of small-molecule hole-transporting materials (HTMs) that are based on fluorenylidene fragments were synthesized and tested in perovskite solar cells (PSCs). The investigated compounds were synthesized by a facile two-step synthesis, and their properties were measured using thermoanalytical, optoelectronic, and photovoltaic methods. The champion PSC device that was doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) reached a power conversion efficiency of 22.83%. The longevity of the PSC device with the best performing HTM, V1387, was evaluated in different conditions and compared to that of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), showing improved stability. This work provides an alternative HTM strategy for fabricating efficient and stable PSCs.

9.
R Soc Open Sci ; 10(7): 230260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501661

RESUMO

Due to the ease of synthesis and the ability to easily tune properties, organic semiconductors are widely researched and used in many optoelectronic applications. Requirements such as thermal stability, appropriate energy levels and charge-carrier mobility have to be met in order to consider the suitability of an organic semiconductor for a specific application. Balancing of said properties is not a trivial task; often one characteristic is sacrificed to improve the other and therefore a search for well-balanced materials is necessary. Herein, seven new charge-transporting biphenyl-based enamine molecules are reported. The new materials were synthesized using a simple one-step reaction without the use of expensive transition metal catalysts. It was observed that subtle variations in the structure lead to notable changes in the properties. Materials exhibited high thermal stability and relatively high carrier drift mobility, reaching 2 × 10-2 cm2V-1 s-1 (for BE3) at strong electric fields. Based on the results, three materials show the potential to be applied in organic light emitting diodes and solar cells.

10.
Adv Mater ; 35(30): e2211742, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191054

RESUMO

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.

11.
ACS Appl Energy Mater ; 6(7): 3822-3833, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37064413

RESUMO

Fluorene-based hole transport materials (HTMs) with terminating thiophene units are explored, for the first time, for antimony sulfide (Sb2S3) solar cells. These HTMs possess largely simplified synthesis processes and high yields compared to the conventional expensive hole conductors making them reasonably economical. The thiophene unit-linked HTMs have been successfully demonstrated in ultrasonic spray-deposited Sb2S3 solar cells resulting in efficiencies in the range of 4.7-4.9% with an average visible transmittance (AVT) of 30-33% (400-800 nm) for the cell stack without metal contact, while the cells fabricated using conventional P3HT have yielded an efficiency of 4.7% with an AVT of 26%. The study puts forward cost-effective and transparent HTMs that avoid a post-coating activation at elevated temperatures like P3HT, devoid of parasitic absorption losses in the visible region and are demonstrated to be well aligned for the band edges of Sb2S3 thereby ascertaining their suitability for Sb2S3 solar cells and are potential candidates for semitransparent applications.

12.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934398

RESUMO

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

13.
Mater Horiz ; 10(4): 1292-1300, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786547

RESUMO

Developing efficient and stable organic photovoltaics (OPVs) is crucial for the technology's commercial success. However, combining these key attributes remains challenging. Herein, we incorporate the small molecule 2-((3,6-dibromo-9H-carbazol-9-yl)ethyl)phosphonic acid (Br-2PACz) between the bulk-heterojunction (BHJ) and a 7 nm-thin layer of MoO3 in inverted OPVs, and study its effects on the cell performance. We find that the Br-2PACz/MoO3 hole-extraction layer (HEL) boosts the cell's power conversion efficiency (PCE) from 17.36% to 18.73% (uncertified), making them the most efficient inverted OPVs to date. The factors responsible for this improvement include enhanced charge transport, reduced carrier recombination, and favourable vertical phase separation of donor and acceptor components in the BHJ. The Br-2PACz/MoO3-based OPVs exhibit higher operational stability under continuous illumination and thermal annealing (80 °C). The T80 lifetime of OPVs featuring Br-2PACz/MoO3 - taken as the time over which the cell's PCE reduces to 80% of its initial value - increases compared to MoO3-only cells from 297 to 615 h upon illumination and from 731 to 1064 h upon continuous heating. Elemental analysis of the BHJs reveals the enhanced stability to originate from the partially suppressed diffusion of Mo ions into the BHJ and the favourable distribution of the donor and acceptor components induced by the Br-2PACz.

14.
Chem Commun (Camb) ; 58(54): 7495-7498, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35698905

RESUMO

Carbazole-based molecules V1205 and V1206 capable of cross-linking via three vinyl groups were synthesized by a simple process and applied as hole-transporting materials (HTMs) in inverted perovskite solar cells (PSC). Novel HTMs were thermally polymerized to provide films resistant to organic solvents. A PSC with V1205 exhibited a photovoltaic conversion efficiency of 16.9% with good stability.

15.
Angew Chem Int Ed Engl ; 61(5): e202113207, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34918438

RESUMO

Hybrid lead halide perovskite solar cells (PSCs) have emerged as potential competitors to silicon-based solar cells with an unprecedented increase in power conversion efficiency (PCE), nearing the breakthrough point toward commercialization. However, for hole-transporting materials, it is generally acknowledged that complex structures often create issues such as increased costs and hazardous substances in the synthetic schemes, when translated from the laboratory to manufacture on a large scale. Here, we present cyclobutane-based hole-selective materials synthesized using simple and green-chemistry inspired protocols in order to reduce costs and adverse environmental impact. A series of novel semiconductors with molecularly engineered side arms were successfully applied in perovskite solar cells. V1366-based PSCs feature impressive efficiency of 21 %, along with long-term operational stability under atmospheric environment. Most importantly, we also fabricated perovskite solar modules exhibiting a record efficiency over 19 % with an active area of 30.24 cm2 .

16.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737288

RESUMO

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

17.
Chem Mater ; 33(17): 7017-7027, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34552307

RESUMO

A set of novel branched molecules bearing a different number of 3,6-bis(4,4'-dimethoxydiphenylamino)carbazole-based (Cz-OMeDPA) periphery arms linked together by aliphatic chains have been developed, and their performance has been tested in perovskite solar cells (PSCs). Electrical and photovoltaic properties have been evaluated with respect to the number of Cz-OMeDPA moieties and the nature of the linking aliphatic chain. The isolated compounds possess sufficient thermal stability and are amorphous having high glass-transition temperatures (>120 °C) minimizing the risk of direct layer crystallization. The highest hole-drift mobility of µ0 = 3.1 × 10-5 cm2 V-1 s-1 is comparable to that of the reference standard spiro-OMeTAD (4.1 × 10-5 cm2 V-1 s-1) under identical conditions. Finally, PSCs employing two new HTMs (2Cz-OMeDPA and 3Cz-OMeDPA-OH) bearing two and three substituted carbazole chromophores, linked by an aliphatic chain, show a performance of around 20%, which is on par with devices using spiro-OMeTAD and demonstrates slightly enhanced device stability.

18.
Chem Mater ; 33(15): 6059-6067, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34475636

RESUMO

To attain commercial viability, perovskite solar cells (PSCs) have to be reasonably priced, highly efficient, and stable for a long period of time. Although a new record of a certified power conversion efficiency (PCE) value over 25% was achieved, PSC performance is limited by the lack of hole-transporting materials (HTMs), which extract positive charges from the light-absorbing perovskite layer and carry them to the electrode. Here, we report spirobifluorene-based HTMs with finely tuned energy levels, high glass-transition temperature, and excellent charge mobility and conductivity enabled by molecularly engineered enamine arms. HTMs are synthesized using simple condensation chemistry, which does not require costly catalysts, inert reaction conditions, and time-consuming product purification procedures. Enamine-derived HTMs allow the fabrication of PSCs reaching a maximum PCE of 19.2% and stability comparable to spiro-OMeTAD. This work demonstrates that simple enamine condensation reactions could be used as a universal path to obtain HTMs for highly efficient and stable PSCs.

19.
ChemSusChem ; 14(17): 3569-3578, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928763

RESUMO

Self-assembled monolayers (SAMs) based on Br-2PACz ([2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid) 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) molecules were investigated as hole-extracting interlayers in organic photovoltaics (OPVs). The highest occupied molecular orbital (HOMO) energies of these SAMs were measured at -6.01 and -5.30 eV for Br-2PACz and MeO-2PACz, respectively, and found to induce significant changes in the work function (WF) of indium-tin-oxide (ITO) electrodes upon chemical functionalization. OPV cells based on PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]) : BTP-eC9 : PC71 BM ([6,6]-phenyl-C71-butyric acid methyl ester) using ITO/Br-2PACz anodes exhibited a maximum power conversion efficiency (PCE) of 18.4 %, outperforming devices with ITO/MeO-2PACz (14.5 %) and ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT : PSS) (17.5 %). The higher PCE was found to originate from the much higher WF of ITO/Br-2PACz (-5.81 eV) compared to ITO/MeO-2PACz (4.58 eV) and ITO/PEDOT : PSS (4.9 eV), resulting in lower interface resistance, improved hole transport/extraction, lower trap-assisted recombination, and longer carrier lifetimes. Importantly, the ITO/Br-2PACz electrode was chemically stable, and after removal of the SAM it could be recycled and reused to construct fresh OPVs with equally impressive performance.

20.
Nat Mater ; 20(9): 1248-1254, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33888905

RESUMO

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA