Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transl Oncol ; 32: 101662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004490

RESUMO

INTRODUCTION: Standard-of-care systemic chemotherapies for pancreatic ductal adenocarcinoma (PDAC) currently have limited clinical benefits, in addition to causing adverse side effects in many patients. One factor known to contribute to the poor chemotherapy response is the poor drug diffusion into PDAC tumors. Novel treatment methods are therefore drastically needed to improve targeted delivery of treatments. Here, we evaluated the efficacy of the 3DNA® Nanocarrier (3DNA) platform to direct delivery of therapeutics to PDAC tumors in vivo. MATERIALS AND METHODS: A panel of PDAC cell lines and a patient tissue microarray were screened for established tumor-specific proteins to identify targeting moieties for active targeting of the 3DNA. NRG mice with or without orthotopic MIA PaCa-2-luciferase PDAC tumors were treated intraperitoneally with 100 µl of fluorescently labeled 3DNA. RESULTS: Folic acid and transferrin receptors were significantly elevated in PDAC compared to normal pancreas. Accordingly, both folic acid- and transferrin-conjugated 3DNA treatments significantly increased delivery of 3DNA specifically to tumors in comparison to unconjugated 3DNA treatment. In the absence of tumors, there was an increased clearance of both folic acid-conjugated 3DNA and unconjugated 3DNA, compared to the clearance rate in tumor-bearing mice. Lastly, delivery of siLuciferase by folic acid-conjugated 3DNA in an orthotopic model of luciferase-expressing PDAC showed significant and prolonged suppression of luciferase protein expression and activity. CONCLUSION: Our study progresses the 3DNA technology as a reliable and effective treatment delivery platform for targeted therapeutic approaches in PDAC.

2.
Pharmaceutics ; 14(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890393

RESUMO

3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.

3.
Pharmaceutics ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683962

RESUMO

Autoimmune diseases such as rheumatoid arthritis are caused by immune system recognition of self-proteins and subsequent production of effector T cells that recognize and attack healthy tissue. Therapies for these diseases typically utilize broad immune suppression, which can be effective, but which also come with an elevated risk of susceptibility to infection and cancer. T cell recognition of antigens is driven by binding of T cell receptors to peptides displayed on major histocompatibility complex proteins (MHCs) on the cell surface of antigen-presenting cells. Technology for recombinant production of the extracellular domains of MHC proteins and loading with peptides to produce pMHCs has provided reagents for detection of T cell populations, and with the potential for therapeutic intervention. However, production of pMHCs in large quantities remains a challenge and a translational path needs to be established. Here, we demonstrate a fusion protein strategy enabling large-scale production of pMHCs. A peptide corresponding to amino acids 259-273 of collagen II was fused to the N-terminus of the MHC_II beta chain, and the alpha and beta chains were each fused to human IgG4 Fc domains and co-expressed. A tag was incorporated to enable site-specific conjugation. The cytotoxic drug payload, MMAF, was conjugated to the pMHC and potent, peptide-specific killing of T cells that recognize the collagen pMHC was demonstrated with tetramerized pMHC-MMAF conjugates. Finally, these pMHCs were incorporated into MMAF-loaded 3DNA nanomaterials in order to provide a biocompatible platform. Loading and pMHC density were optimized, and peptide-specific T cell killing was demonstrated. These experiments highlight the potential of a pMHC fusion protein-targeted, drug-loaded nanomaterial approach for selective delivery of therapeutics to disease-relevant T cells and new treatment options for autoimmune disease.

4.
PLoS One ; 15(7): e0234792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614850

RESUMO

The Myo/Nog cell lineage was discovered in the chick embryo and is also present in adult mammalian tissues. The cells are named for their expression of mRNA for the skeletal muscle specific transcription factor MyoD and bone morphogenetic protein inhibitor Noggin. A third marker for Myo/Nog cells is the cell surface molecule recognized by the G8 monoclonal antibody (mAb). G8 has been used to detect, track, isolate and kill Myo/Nog cells. In this study, we screened a membrane proteome array for the target of the G8 mAb. The array consisted of >5,000 molecules, each synthesized in their native confirmation with appropriate post-translational modifications in a single clone of HEK-293T cells. G8 mAb binding to the clone expressing brain-specific angiogenesis inhibitor 1 (BAI1) was detected by flow cytometry, re-verified by sequencing and validated by transfection with the plasmid construct for BAI1. Further validation of the G8 target was provided by enzyme-linked immunosorbent assay. The G8 epitope was identified by screening a high-throughput, site directed mutagenesis library designed to cover 95-100% of the 954 amino acids of the extracellular domain of the BAI1 protein. The G8 mAb binds within the third thrombospondin repeat of the extracellular domain of human BAI1. Immunofluorescence localization experiments revealed that G8 and a commercially available BAI1 mAb co-localize to the subpopulation of Myo/Nog cells in the skin, eyes and brain. Expression of the multi-functional BAI1 protein in Myo/Nog cells introduces new possibilities for the roles of Myo/Nog cells in normal and diseased tissues.


Assuntos
Proteínas Angiogênicas/biossíntese , Miofibroblastos/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Substituição de Aminoácidos , Proteínas Angiogênicas/química , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Encéfalo/citologia , Proteínas de Transporte/análise , Linhagem da Célula , Epitopos/imunologia , Proteínas do Olho/biossíntese , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Desenvolvimento Muscular , Proteína MyoD/análise , Especificidade de Órgãos , Conformação Proteica , Domínios Proteicos , Coelhos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Sequências Repetitivas de Aminoácidos , Pele/citologia , Especificidade da Espécie , Tatuagem , Adulto Jovem
5.
Invest Ophthalmol Vis Sci ; 60(6): 1813-1823, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042787

RESUMO

Purpose: Posterior capsule opacification (PCO) is a vision-impairing disease that occurs in some adults and most children after cataract surgery. Contractile myofibroblasts contribute to PCO by producing wrinkles in the lens capsule that scatter light. Myofibroblasts in the lens originate from Myo/Nog cells named for their expression of the MyoD transcription factor and bone morphogenetic protein inhibitor noggin. In this study we tested the effects of depleting Myo/Nog cells on development of PCO. Methods: Myo/Nog cells were eliminated by injecting the G8 antibody conjugated to 3DNA nanocarriers for the cytotoxin doxorubicin (G8:3DNA:Dox) during cataract surgery in rabbits. The severity of PCO was scored by slit lamp analysis, gross and histologic observation, and immunofluorescence localization of α-smooth muscle actin. Results: G8:3DNA:Dox specifically induced cell death in Myo/Nog cells in the lens. None of the lenses administered G8:3DNA containing 9 to 36 µM doxorubicin developed greater than trace levels of central PCO and few myofibroblasts were present on the capsule. Less than 9% of these lenses exhibited greater than mild levels of peripheral PCO. Doxorubucin itself reduced PCO; however, myofibroblasts and wrinkles were abundant in the lens, and off-target effects were observed in the ciliary processes and cornea. Conclusions: Myo/Nog cells are the primary source of myofibroblasts in the lens after cataract surgery. Targeted depletion of Myo/Nog cells has potential for preventing PCO and preserving vision.


Assuntos
Opacificação da Cápsula/patologia , Proteínas de Transporte/metabolismo , Proteína MyoD/metabolismo , Miofibroblastos/patologia , Cápsula Posterior do Cristalino/patologia , Animais , Opacificação da Cápsula/metabolismo , Modelos Animais de Doenças , Feminino , Miofibroblastos/metabolismo , Cápsula Posterior do Cristalino/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA