Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 86(3): 1460-1475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463066

RESUMO

Introduction and importance: Automated segmentation of glioblastoma multiforme (GBM) from MRI images is crucial for accurate diagnosis and treatment planning. This paper presents a new and innovative approach for automating the segmentation of GBM from MRI images using the marker-controlled watershed segmentation (MCWS) algorithm. Case presentation and methods: The technique involves several image processing techniques, including adaptive thresholding, morphological filtering, gradient magnitude calculation, and regional maxima identification. The MCWS algorithm efficiently segments images based on local intensity structures using the watershed transform, and fuzzy c-means (FCM) clustering improves segmentation accuracy. The presented approach achieved improved segmentation accuracy in detecting and segmenting GBM tumours from axial T2-weighted (T2-w) MRI images, as demonstrated by the mean characteristics performance metrics for GBM segmentation (sensitivity: 0.9905, specificity: 0.9483, accuracy: 0.9508, precision: 0.5481, F_measure: 0.7052, and jaccard: 0.9340). Clinical discussion: The results of this study underline the importance of reliable and accurate image segmentation for effective diagnosis and treatment planning of GBM tumours. Conclusion: The MCWS technique provides an effective and efficient approach for the segmentation of challenging medical images.

2.
Int J Surg Case Rep ; 111: 108818, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716060

RESUMO

INTRODUCTION AND IMPORTANCE: Accurate segmentation of meningiomas from contrast-enhanced T1-weighted (CE T1-w) magnetic resonance imaging (MRI) is crucial for diagnosis and treatment planning. Manual segmentation is time-consuming and prone to variability. To evaluate an automated segmentation approach for meningiomas using marker-controlled watershed segmentation (MCWS) and fuzzy c-means (FCM) algorithms. CASE PRESENTATION AND METHODS: CE T1-w MRI of 3 female patients (aged 59, 44, 67 years) with right frontal meningiomas were analyzed. Images were converted to grayscale and preprocessed with Otsu's thresholding and FCM clustering. MCWS segmentation was performed. Segmentation accuracy was assessed by comparing automated segmentations to manual delineations. CLINICAL DISCUSSION: The approach successfully segmented meningiomas in all cases. Mean sensitivity was 0.8822, indicating accurate identification of tumors. Mean Dice similarity coefficient between Otsu's and FCM1 was 0.6599, suggesting good overlap between segmentation methods. CONCLUSION: The MCWS and FCM approach enables accurate automated segmentation of meningiomas from CE T1-w MRI. With further validation on larger datasets, this could provide an efficient tool to assist in delineating meningioma boundaries for clinical management.

3.
J Med Signals Sens ; 12(1): 84-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265470

RESUMO

Nowadays, magnetic resonance imaging (MRI) has a high ability to distinguish between soft tissues because of high spatial resolution. Image processing is extensively used to extract clinical data from imaging modalities. In the medical image processing field, the knee's cyst (especially Baker) segmentation is one of the novel research areas. There are different methods for image segmentation. In this paper, the mathematical operation of the watershed algorithm is utilized by MATLAB software based on marker-controlled watershed segmentation for the detection of Baker's cyst in the knee's joint MRI sagittal and axial T2-weighted images. The performance of this algorithm was investigated, and the results showed that in a short time Baker's cyst can be clearly extracted from original images in axial and sagittal planes. The marker-controlled watershed segmentation was able to detect Baker's cyst reliable and can save time and current cost, especially in the absence of specialists it can help us for the easier diagnosis of MRI pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA