RESUMO
MicroRNAs (miRNAs) comprise a class of non-coding RNA with extensive regulatory functions within cells. MiR-106a is recognized for its super-regulatory roles in vital processes. Hence, the analysis of its expression in association with diseases has attracted considerable attention for molecular diagnosis and drug development. Numerous studies have investigated miR-106 target genes and shown that this miRNA regulates the expression of some critical cell cycle and apoptosis factors, suggesting miR-106a as an ideal diagnostic and prognostic biomarker with therapeutic potential. Furthermore, the reported correlation between miR-106a expression level and cancer drug resistance has demonstrated the complexity of its functions within different tissues. In this study, we have conducted a comprehensive review on the expression levels of miR-106a in various cancers and other diseases, emphasizing its target genes. The promising findings surrounding miR-106a suggest its potential as a valuable biomolecule. However, further validation assessments and overcoming existing limitations are crucial steps before its clinical implementation can be realized.
RESUMO
PURPOSE: As a noninvasive and nonionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the body, thereby addressing the penetration depth barrier of the light-based therapies. In cancer therapy, the effectiveness of ultrasound can be enhanced by utilizing nanomaterials that exhibit sonosensitizing properties called as nanosonosensitizers. The gold nanoparticle (AuNP) has been recently presented as a potent nanosonosensitizer with the potential to simultaneously enhance both the thermal and mechanical interactions of ultrasound with the tissue of the human body. Accordingly, this paper attempts to evaluate the in vivo antitumor efficiency of ultrasound in combination with AuNP. METHODS: BALB/c mice-bearing CT26 colorectal tumor model was intraperitoneally injected with AuNPs and then subjected to ultrasound irradiation (1 MHz; 2 W/cm2 ; 10 min) for three sessions. Furthermore, [18 F]FDG (2-deoxy-2-[18 F]fluoro-d-glucose) positron-emission tomography (PET) imaging was performed and the radiomic features from different feature categorizes were extracted to quantify the tumors' phenotype. RESULTS: The tumors were dramatically shrunk and the mice appeared healthy over 21 days of study span without the evidence of relapse. The animals treated with AuNP + ultrasound exhibited an obvious decline in tumor metabolic parameters such as standard uptake value (SUV), total lesion glycolysis (TLG), and metabolic tumor volume (MTV) compared to other treatment groups. CONCLUSION: These findings support the use of AuNP as a potent sonosensitizing agent with the potential to use the thermal and mechanical effects of ultrasound so as to cause damage to the focused tumor site, resulting in an improved antitumor efficacy.
RESUMO
X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.
Assuntos
Meios de Contraste , Ácido Fólico , Ouro , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologiaRESUMO
Acinetobacter baumannii is an important opportunistic pathogen that causes major public health concern especially in hospitalized patients due to the acquisition of multidrug resistance (MDR). The aim of this study was to systematically review published data about the prevalence rate of MDR-A. baumannii (MDR-AB) from different parts of Iran and provide an overall relative frequency (RF) using meta-analysis. All available national and international databanks were searched to find published studies up to June 2016. Quality of studies was assessed by STROB and PRISMA forms. Because of the significant heterogeneity observed, random effects model was used to combine the results. STATA SE version 11.2 was used for statistical analysis. Out of the 9646 results, 37 suitable articles were extracted according to inclusion and exlusion criteria. The pooled prevalence of MDR-AB was estimated 72% annually. Relative frequency of MDR-AB in different studies varied from 22.8 to 100%. Since the prevalence of MDR-AB is higher than many other countries, measures should be taken to keep the emergence and transmission of these strains to a minimum.
Assuntos
Infecções por Acinetobacter/epidemiologia , Farmacorresistência Bacteriana Múltipla , Acinetobacter baumannii , Humanos , Irã (Geográfico)/epidemiologia , PrevalênciaRESUMO
Hyperthermia is considered as a new approach for cancer therapy. Non-selectivity of tissue heating in conventional hyperthermia methods results in collateral damages to healthy tissues and this is the greatest obstacle against hyperthermia in clinic. Herein, to promote the efficiency of conventional hyperthermia methods, nanoparticle-enhanced heating from 1MHz ultrasound was investigated in vitro and in vivo. The experiments were conducted on two mediums; (1) various colloidal nano-solutions (in vitro section) and (2) CT26 mouse colon carcinoma tumor loaded by various nanoparticles (in vivo section). Experiments in this study were designed to evaluate and compare the sonosensitizing potentials of gold nanoparticles (AuNPs), iron oxide nanoparticles (IONPs), and nano-graphene oxide (NGO) in enhancement of ultrasound-induced heat generation. The temperature profile of the solutions and the animal tumors containing nanoparticles were recorded during sonication. An increased heating rate during sonication was observed for both in vitro and in vivo mediums when the nanoparticles were present. Our in vitro experiments revealed that percentages of increases in temperature elevation rates were 12.5%, 20.4%, and 37.5% for IONPs, NGO, and AuNPs, respectively. Compared to the nanoparticles-free tumors, direct injection of AuNPs, NGO and IONPs into the tumors and subsequent sonication for 10min caused an increased temperature elevation rate of 37.5%, 24.1% and 16.1%, respectively. AuNPs, IONPs and NGO are proposed as ultrasound responsive nanomaterials with the potential of focusing the energy of acoustic waves on the tumor and inducing localized hyperthermia.