Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Water Res ; 202: 117389, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274901

RESUMO

Accurate estimations of gaseous emissions and carbon sequestration in wastewater processing are essential for the design, operation and planning of treatment infrastructure, particularly considering greenhouse gas reduction targets. In this study, we look at the interplay between biological productivity, hydrodynamics and evasion of carbon-based greenhouse gases (GHG) through diffusion and ebullition in order to provide direction for more accurate assessments of their emissions from waste stabilization ponds (WSPs). The ponds stratified in the day and mixed at night. Buoyancy flux contributed between 40 and 75% to turbulence in the water column during nocturnal cooling events, and the associated mixing lead to increasing carbon dioxide (CO2) and methane (CH4) concentrations by up to an order of magnitude in the surface. The onset of stratification and phytoplankton surface blooms, associated with high pH as well as low and variable CO2 partial pressure resulted in an overall reduction of CO2 efflux. Ebullition represented between 40 and 99% of the total CH4 efflux, and up to 95% of the integrated GHG release during wastewater treatment (in CO2 equivalents). Hydrodynamic conditions, diurnal variability and ebullition need to be accounted for reliable assessments of GHG emissions from WSPs. Our study is an important step towards gaining a deeper understanding in the functioning of these hot spots of carbon processing. The contribution of WSPs to atmospheric GHG budget is likely to increase with population growth unless their performance is improved in this regard.


Assuntos
Gases de Efeito Estufa , Metano , Dióxido de Carbono/análise , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Lagoas
2.
J Environ Manage ; 279: 111788, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310241

RESUMO

Sewers are a critical part of the urban water system and represent a considerable investment due to the presence of extensive networks in many cities. Consequently, excess sewer sediment deposition, from changed inflow conditions or lack of appropriate sewer infrastructure, can lead to significantly increased maintenance and operational costs. The main aim of this manuscript is to quantify the potential impacts of reduced inflow and increased sediment concentrations from the implementation of sustainable water practices, such as Decentralized Water Recycling and Water Demand Management, on excess sediment deposition in gravity sewers. Experiments in a sewer pilot plant, with municipal wastewater, and modelling using a comprehensive local-scale sewer sediment model were used in conjunction to address this aim. Results from both these methods indicated that a reduction in inflows from the moderate implementation of sustainable water practices had a large impact on the quantity of sediment deposited in gravity sewers. However, further modelling showed that the reduction in bed erosion during peak flows for the same implementations of sustainable water practices occurred more gradually. Overall, our findings showed that in existing gravity sewer mains with reasonable slope and flow velocities, a moderate decrease in peak flow velocity of around 15% due to the implementation of Decentralized Water Recycling and Water Demand Management was unlikely to result in a net increase of sediment deposition. Future work in this area could focus on confirming these findings through case studies in the field or on long-term pilot studies with detailed bed height and density measurements.


Assuntos
Esgotos , Água , Cidades , Reciclagem , Águas Residuárias
3.
Sci Total Environ ; 744: 140576, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32717461

RESUMO

Intermittently Decanted Extended Aeration (IDEA) processes are widely used for wastewater treatment. However, in-depth performance evaluation of a full-scale IDEA plant is rare, making it challenging for water utilities to meet the increasingly stringent discharge requirements with these assets. This study aims to fill this gap through a comprehensive assessment of nitrogen and phosphorus removal in a full-scale IDEA plant in Australia. The plant consists of two identical IDEA tanks operated in-parallel. Upstream to each tank is a bioselector with four interlinked compartments. We conducted an eight-week monitoring program with four intensive cyclic studies to establish detailed nutrient profiles of the two IDEA tanks to assess the performance of nitrogen and alum assisted phosphorus removal. Results showed that the plant enabled good nitrification in the IDEA effluent. However, the denitrification efficiency was low (ca. 50%), and could be improved by decreasing oxygen supply to suppress nitrite oxidation and preserve influent carbon. The addition of alum to the IDEA tank appeared to be ineffective given the low P concentration (<1 mg-P/L) in the tank. The bioselector was identified as a better alum-dosing location, given its higher (~7-fold) phosphate concentration in comparison to the influent. Stopping the dosing of alum only marginally increased the effluent P (0.35 to 0.52 mg-P/L), implying that P removal was predominantly (94%) biologically mediated and achieved via P accumulating microorganisms. Overall, this study offers timely and useful process understanding of the performance of IDEA plants, as well as other similar wastewater treatment configurations.

4.
Water Res ; 169: 115243, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704461

RESUMO

Algal and bacterial communities play a major role in the treatment performance and efficiency of waste stabilisation ponds (WSPs); however, the study of these WSP microbial communities has been challenging. Flow cytometry (FCM) has been used widely as a rapid, culture-independent method of characterising algae and/or bacteria in a range of freshwater and marine environments, and in conventional wastewater treatment processes, but its application to WSP wastewater has been underexplored. In this study, a method for the characterisation of both algal and bacterial microbial populations in WSP wastewater is presented and standardised, using cultures and field samples. We show that SYTO 16 dye is more effective than SYBR Green I for the concurrent detection of both algae and bacteria in samples. Through gating and phenotypic diversity analysis, the FCM results show both spatial and temporal shifts in pond microbial communities. The ability to rapidly determine the spatiotemporal shifts in pond populations is not only important for the improvement of pond operation and monitoring strategies, but also for the planning and management. Flow cytometry has the potential to become a diagnostic tool for ponds to assess treatment performance and determine the most optimal operating conditions.


Assuntos
Microbiota , Lagoas , Citometria de Fluxo , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
J Environ Manage ; 240: 219-230, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30947090

RESUMO

Decreasing per capita water consumption in several OECD countries has led to a notable flow reduction into sewer systems. However, sewers still transport similar quantities of solids and pollutants, leading to increased wastewater concentration and, potentially, excess solids deposition. The shift towards decentralised water schemes in cities and widely reported changes in rainfall patterns cast additional uncertainty on future wastewater quality and flows into sewers. Excess solids deposition in sewers can cause increased environmental pollution risks at Combined Sewer Overflows from solids resuspension and reduced sewer hydraulic capacities. This review analyses the magnitude of excess solids deposition due to changing wastewater composition and evaluates current approaches to modelling sewer solids. Gaps in commonly used modelling approaches for deposited bed processes, specifically in bed consolidation and bed particle cohesion processes, and gross solids transport were identified and addressed to enable better solids risk prediction and management.


Assuntos
Esgotos , Águas Residuárias , Cidades
7.
Water Res ; 110: 354-365, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062073

RESUMO

Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies, such as channels, recreational water bodies, and commercial ports.


Assuntos
Lagoas , Esgotos , Hidrodinâmica , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água
8.
Water Res ; 108: 401-411, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839832

RESUMO

As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems.


Assuntos
Águas Residuárias , Qualidade da Água , Escherichia coli , Humanos , Esgotos/química , Esteróis , Eliminação de Resíduos Líquidos , Purificação da Água
9.
Water Res ; 108: 222-231, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847147

RESUMO

Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 104 cells mL-1). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms.


Assuntos
Eutrofização , Proliferação Nociva de Algas , Cianobactérias , Monitoramento Ambiental , Previsões , Lagos/microbiologia
10.
Toxins (Basel) ; 8(9)2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27589798

RESUMO

Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Poluentes da Água/análise , Relação Dose-Resposta a Droga , Humanos , Lagos/química , Lagos/microbiologia , Toxinas Marinhas , Microcistinas/análise , Medição de Risco
11.
Environ Sci Technol ; 50(16): 8505-13, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27447196

RESUMO

The transport of microcystin, a hepatotoxin produced by cyanobacteria (e.g., Microcystis aeruginosa), to estuaries can adversely affect estuarine and coastal ecosystems. We evaluated whether halogen radicals (i.e., reactive halogen species (RHS)) could significantly contribute to microcystin photodegradation during transport within estuaries. Experiments in synthetic and natural water samples demonstrated that the presence of seawater halides increased quantum yields for microcystin indirect photodegradation by factors of 3-6. Additional experiments indicated that photoproduced RHS were responsible for this effect. Despite the fact that dissolved organic matter (DOM) concentrations decreased in more saline waters, the calculated photochemical half-life of microcystin decreased 6-fold with increasing salinity along a freshwater-estuarine transect due to the halide-associated increase in quantum yield. Modeling of microcystin photodegradation along this transect indicated that the time scale for RHS-mediated microcystin photodegradation is comparable to the time scale of transport. Microcystin concentrations decline by ∼98% along the transect when considering photodegradation by RHS, but only by ∼54% if this pathway were ignored. These results suggest the importance of considering RHS-mediated photodegradation in future models of microcystin fate in freshwater-estuarine systems.


Assuntos
Estuários , Halogênios/química , Microcistinas/química , Fotólise , Meia-Vida
12.
Water Res ; 101: 64-74, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27258617

RESUMO

Waste stabilisation ponds (WSPs) are highly enriched environments that may emit large quantities of greenhouse gases (GHG), including CO2, CH4 and N2O. However, few studies provide detailed reports on these emissions. In the present study, we investigated GHG emissions from WSPs in Western Australia and Quebec, Canada, and compared emissions to WSPs from other climatic regions and to other types of aquatic ecosystems. Surface water GHG concentrations were related to phytoplankton biomass and nutrients. The CO2 was either emitted or absorbed by WSPs, largely as a function of phytoplankton dynamics and strong stratification in these shallow systems, whereas efflux of CH4 and N2O to the atmosphere was always observed albeit with highly variable emission rates, dependent on treatment phase and time of the day. The total global warming potential index (GWP index, calculated as CO2 equivalent) of emitted GHG from WSPs in Western Australia averaged 12.8 mmol m(-2) d(-1) (median), with CO2, CH4 and N2O respectively contributing 0%, 96.7% and 3.3% of the total emissions, while in Quebec WSPs this index was 194 mmol m(-2) d(-1), with a relative contribution of 93.8, 3.0 and 3.2% respectively. The CO2 fluxes from WSPs were of the same order of magnitude as those reported in hydroelectric reservoirs and constructed wetlands in tropical climates, whereas CH4 fluxes were considerably higher compared to other aquatic ecosystems. N2O fluxes were in the same range of values reported for WSPs in subtropical climate.


Assuntos
Efeito Estufa , Lagoas , Metano , Quebeque , Austrália Ocidental
13.
Environ Monit Assess ; 187(7): 476, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26122127

RESUMO

The occurrence of cyanobacteria and microcystin is highly dynamic in natural environments and poses one of the biggest challenges to water resource management. While a number of drivers are known to be responsible for the occurrence of cyanobacterial blooms, the drivers of microcystin production are not adequately known. This study aims to quantify the effects of the changes in the structures of phytoplankton and cyanobacterial communities on the dynamics of microcystin production under highly variable nutrient concentration. In our study, nutrient variability could explain 64% of the variability in microcystin production. When changes in the fractions of non-cyanobacteria versus cyanobacteria genera were additionally included, 80% of the variability in microcystin production could be explained; under high nutrient concentrations, non-cyanobacterial phytoplankton groups were dominant over cyanobacteria and cyanobacteria produced more toxins. In contrast, changes in the cyanobacterial community structures could only explain a further 4% of the dynamics of microcystin production. As such, the dominance of non-cyanobacterial groups appears to be a useful factor to explain microcystin occurrence in addition to traditionally used factors such as absolute cyanobacterial cell numbers, especially when the nutrient regime is taken into account. This information could help to further refine the risk assessment frameworks which are currently used to manage the risk posed by cyanobacterial blooms.


Assuntos
Cianobactérias , Lagos/química , Consórcios Microbianos , Microcistinas/biossíntese , Fitoplâncton , Monitoramento Ambiental , Ferro/análise , Nitrogênio/análise , Fósforo/análise
14.
Toxins (Basel) ; 7(3): 900-18, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25793723

RESUMO

Microcystins are toxins produced by cyanobacteria. They occur in aquatic systems across the world and their occurrence is expected to increase in frequency and magnitude. As microcystins are hazardous to humans and animals, it is essential to understand their fate in aquatic systems in order to control health risks. While the occurrence of microcystins in sediments has been widely reported, the factors influencing their occurrence, variability, and spatial distribution are not yet well understood. Especially in shallow lakes, which often develop large cyanobacterial blooms, the spatial variability of toxins in the sediments is a complex interplay between the spatial distribution of toxin producing cyanobacteria, local biological, physical and chemical processes, and the re-distribution of toxins in sediments through wind mixing. In this study, microcystin occurrence in lake sediment, and their relationship with biological and physicochemical variables were investigated in a shallow, eutrophic lake over five months. We found no significant difference in cyanobacterial biomass, temperature, pH, and salinity between the surface water and the water directly overlying the sediment (hereafter 'overlying water'), indicating that the water column was well mixed. Microcystins were detected in all sediment samples, with concentrations ranging from 0.06 to 0.78 µg equivalent microcystin-LR/g sediments (dry mass). Microcystin concentration and cyanobacterial biomass in the sediment was different between sites in three out of five months, indicating that the spatial distribution was a complex interaction between local and mixing processes. A combination of total microcystins in the water, depth integrated cyanobacterial biomass in the water, cyanobacterial biomass in the sediment, and pH explained only 21.1% of the spatial variability of microcystins in the sediments. A more in-depth analysis that included variables representative of processes on smaller vertical or local scales, such as cyanobacterial biomass in the different layers and the two fractions of microcystins, increased the explained variability to 51.7%. This highlights that even in a well-mixed lake, local processes are important drivers of toxin variability. The present study emphasises the role of the interaction between water and sediments in the distribution of microcystins in aquatic systems as an important pathway which deserves further consideration.


Assuntos
Toxinas Bacterianas/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Toxinas Marinhas/análise , Microcistinas/análise , Biomassa , Fenômenos Químicos , Cianobactérias/isolamento & purificação , Toxinas de Cianobactérias , Monitoramento Ambiental/métodos , Modelos Lineares , Microbiologia da Água
15.
Toxins (Basel) ; 7(1): 66-80, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25584428

RESUMO

Flavonoids are natural polyphenolic compounds produced by many aquatic plants and released in their environments. In this study, the effects of several aquatic flavonoids on cyanobacterial Microcystis aeruginosa, especially in relation to the cell growth, photosynthetic activity, cell morphology, and cell membrane integrity, were investigated. Significant growth inhibition was observed when the cyanobacteria were exposed to three flavonoids, namely, 5,4'-dihydroxyflavone (DHF), apigenin, and luteolin. Luteolin reduced the effective quantum yield, photosynthetic efficiency, and maximal electron transport rate by 70%, 59% and 44%, respectively, whereas 5,4'-DHF and apigenin slightly affected these parameters, which implies that luteolin disrupts the photosynthetic system. Moreover, 5,4'-DHF and apigenin compromised the membrane integrity, and induced membrane depolarization in 52% and 38%, and permeabilization in 30% and 44% of the cells, respectively. The 5,4'-DHF and apigenin showed more pronounced effects on M. aeruginosa morphology and membrane integrity, compared to the luteolin. These results suggest that flavonoids could have significant effects on growth and physiological functions in cyanobacterial species.


Assuntos
Apigenina/farmacologia , Isoflavonas/farmacologia , Luteolina/farmacologia , Microcystis/efeitos dos fármacos , Microcystis/genética , Microcystis/fisiologia , Fotossíntese/efeitos dos fármacos
16.
Toxicon ; 83: 84-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24631598

RESUMO

Microcystins are produced by several species of cyanobacteria and can harm aquatic organisms and human beings. Sediments have the potential to contribute to the removal of dissolved microcystins from the water body through either adsorption to sediment particles or biodegradation by the sediment's bacterial community. However, the relative contribution of these two removal processes remains unclear and little is known about the significance of sediment's overall contribution. To study this, changes in the concentration of microcystin-LR (MCLR) in the presence of sediment, sediment with microbial inhibitor, and non-sterile lake water were quantified in a laboratory experiment. Our results show that, in the presence of sediment, MCLR concentration decreased significantly in an exponential way without a lag phase, with an average degradation rate of 9 µg d(-1) in the first 24 h. This indicates that sediment can contribute to the removal of MCLR from the water immediately and effectively. Whilst both, the biodegradation and adsorption ability of the sediment contributed significantly to the removal of MCLR from the water body, biodegradation was shown to be the dominant removal process. Also, the sediment's ability to degrade MCLR from the water was shown to be faster than the biodegradation through the bacterial community in the water. The present study emphasizes the importance of sediments for the removal of microcystins from a water body. This will be especially relevant in shallow systems where the interaction between the water and the sediment is naturally high. Our results are also useful for the application of sediments to remove microcystins at water treatment facilities.


Assuntos
Sedimentos Geológicos , Toxinas Marinhas/química , Microcistinas/química , Poluentes da Água/química , Adsorção , Biodegradação Ambiental , Cianobactérias/química
17.
Environ Monit Assess ; 186(4): 2455-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24310368

RESUMO

An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.


Assuntos
Monitoramento Ambiental/métodos , Guias como Assunto , Cianobactérias/crescimento & desenvolvimento , Investimentos em Saúde , Lagos/química , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos , Qualidade da Água/normas , Austrália Ocidental
18.
PLoS One ; 8(6): e66674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840516

RESUMO

Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms 'refuge sites' exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms.


Assuntos
Eutrofização , Microcystis/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento , Animais , Biomassa , Monitoramento Ambiental
19.
Environ Monit Assess ; 185(8): 6379-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23232847

RESUMO

The increasing incidence of toxic cyanobacterial blooms, together with the difficulties to reliably predict cyanobacterial toxin (e.g. microcystins) concentration, has created the need to assess the predictive ability and variability of the cyanobacterial biomass-microcystin relationship, which is currently used to assess the risk to human and ecosystems health. To achieve this aim, we assessed the relationship between cyanobacterial biomass and microcystin concentration on a spatiotemporal scale by quantifying the concentration of cyanobacterial biomass and microcystin in eight lakes over 9 months. On both a temporal and spatial scale, the variability of microcystin concentration exceeded that of cyanobacterial biomass by up to four times. The relationship between cyanobacterial biomass and microcystin was weak and site specific. The variability of cyanobacterial biomass only explained 25 % of the variability in total microcystin concentration and 7 % of the variability of cellular microcystin concentration. Although a significant correlation does not always imply real cause, the results of multiple linear regression analysis suggest that the variability of cyanobacterial biomass and cellular microcystin concentration is influenced by salinity and total phosphorus, respectively. The weak cyanobacterial biomass-microcystin relationship, coupled with the fact that microcystin was present in concentrations exceeding the WHO drinking water guidelines (1 µg L(-1)) in most of the collected samples, emphasizes the high risk of error connected to the traditional indirect microcystin risk assessment method.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Microcistinas/análise , Microbiologia da Água , Biomassa , Eutrofização , Análise Espaço-Temporal
20.
Water Res ; 46(5): 1372-93, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22169160

RESUMO

Toxic cyanobacterial blooms represent a serious hazard to environmental and human health, and the management and restoration of affected waterbodies can be challenging. While cyanobacterial blooms are already a frequent occurrence, in the future their incidence and severity are predicted to increase due to climate change. Climate change is predicted to lead to increased temperature and changes in rainfall patterns, which will both have a significant impact on inland water resources. While many studies indicate that a higher temperature will favour cyanobacterial bloom occurrences, the impact of changed rainfall patterns is widely under-researched and therefore less understood. This review synthesizes the predicted changes in rainfall patterns and their potential impact on inland waterbodies, and identifies mechanisms that influence the occurrence and severity of toxic cyanobacterial blooms. It is predicted that there will be a higher frequency and intensity of rainfall events with longer drought periods in between. Such changes in the rainfall patterns will lead to favourable conditions for cyanobacterial growth due to a greater nutrient input into waterbodies during heavy rainfall events, combined with potentially longer periods of high evaporation and stratification. These conditions are likely to lead to an acceleration of the eutrophication process and prolonged warm periods without mixing of the water column. However, the frequent occurrence of heavy rain events can also lead to a temporary disruption of cyanobacterial blooms due to flushing and de-stratification, and large storm events have been shown to have a long-term negative effect on cyanobacterial blooms. In contrast, a higher number of small rainfall events or wet days can lead to proliferation of cyanobacteria, as they can rapidly use nutrients that are added during rainfall events, especially if stratification remains unchanged. With rainfall patterns changing, cyanobacterial toxin concentration in waterbodies is expected to increase. Firstly, this is due to accelerated eutrophication which supports higher cyanobacterial biomass. Secondly, predicted changes in rainfall patterns produce more favourable growth conditions for cyanobacteria, which is likely to increase the toxin production rate. However, the toxin concentration in inland waterbodies will also depend on the effect of rainfall events on cyanobacterial strain succession, a process that is still little understood. Low light conditions after heavy rainfall events might favour non-toxic strains, whilst inorganic nutrient input might promote the dominance of toxic strains in blooms. This review emphasizes that the impact of changes in rainfall patterns is very complex and will strongly depend on the site-specific dynamics, cyanobacterial species composition and cyanobacterial strain succession. More effort is needed to understand the relationship between rainfall patterns and cyanobacterial bloom dynamics, and in particular toxin production, to be able to assess and mediate the significant threat cyanobacterial blooms pose to our water resources.


Assuntos
Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Proliferação Nociva de Algas , Chuva , Toxinas Bacterianas/biossíntese , Biomassa , Toxinas de Cianobactérias , Secas , Ecossistema , Cadeia Alimentar , Água Doce/química , Água Doce/microbiologia , Toxinas Marinhas/biossíntese , Microcistinas/biossíntese , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA