Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Patterns (N Y) ; 3(12): 100655, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36569558

RESUMO

Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gestation by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a prediction model using nine urine metabolites had the highest accuracy and was validated on an independent cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated statistical significance of identified metabolites. An integrated multiomics model further improved accuracy (AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic acid metabolisms. Integration with immune cytometry data suggested novel associations between immune and proteomic dynamics. While further validation in a larger population is necessary, these encouraging results can serve as a basis for a simple, early diagnostic test for preeclampsia.

3.
Sci Rep ; 12(1): 8033, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577875

RESUMO

Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC-MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value.


Assuntos
Metabolômica , Ultrassonografia Pré-Natal , Cromatografia Líquida , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Gravidez
4.
J Matern Fetal Neonatal Med ; 35(25): 5621-5628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33653202

RESUMO

BACKGROUND: Early identification of pregnant women at risk for preeclampsia (PE) is important, as it will enable targeted interventions ahead of clinical manifestations. The quantitative analyses of plasma proteins feature prominently among molecular approaches used for risk prediction. However, derivation of protein signatures of sufficient predictive power has been challenging. The recent availability of platforms simultaneously assessing over 1000 plasma proteins offers broad examinations of the plasma proteome, which may enable the extraction of proteomic signatures with improved prognostic performance in prenatal care. OBJECTIVE: The primary aim of this study was to examine the generalizability of proteomic signatures predictive of PE in two cohorts of pregnant women whose plasma proteome was interrogated with the same highly multiplexed platform. Establishing generalizability, or lack thereof, is critical to devise strategies facilitating the development of clinically useful predictive tests. A second aim was to examine the generalizability of protein signatures predictive of gestational age (GA) in uncomplicated pregnancies in the same cohorts to contrast physiological and pathological pregnancy outcomes. STUDY DESIGN: Serial blood samples were collected during the first, second, and third trimesters in 18 women who developed PE and 18 women with uncomplicated pregnancies (Stanford cohort). The second cohort (Detroit), used for comparative analysis, consisted of 76 women with PE and 90 women with uncomplicated pregnancies. Multivariate analyses were applied to infer predictive and cohort-specific proteomic models, which were then tested in the alternate cohort. Gene ontology (GO) analysis was performed to identify biological processes that were over-represented among top-ranked proteins associated with PE. RESULTS: The model derived in the Stanford cohort was highly significant (p = 3.9E-15) and predictive (AUC = 0.96), but failed validation in the Detroit cohort (p = 9.7E-01, AUC = 0.50). Similarly, the model derived in the Detroit cohort was highly significant (p = 1.0E-21, AUC = 0.73), but failed validation in the Stanford cohort (p = 7.3E-02, AUC = 0.60). By contrast, proteomic models predicting GA were readily validated across the Stanford (p = 1.1E-454, R = 0.92) and Detroit cohorts (p = 1.1.E-92, R = 0.92) indicating that the proteomic assay performed well enough to infer a generalizable model across studied cohorts, which makes it less likely that technical aspects of the assay, including batch effects, accounted for observed differences. CONCLUSIONS: Results point to a broader issue relevant for proteomic and other omic discovery studies in patient cohorts suffering from a clinical syndrome, such as PE, driven by heterogeneous pathophysiologies. While novel technologies including highly multiplex proteomic arrays and adapted computational algorithms allow for novel discoveries for a particular study cohort, they may not readily generalize across cohorts. A likely reason is that the prevalence of pathophysiologic processes leading up to the "same" clinical syndrome can be distributed differently in different and smaller-sized cohorts. Signatures derived in individual cohorts may simply capture different facets of the spectrum of pathophysiologic processes driving a syndrome. Our findings have important implications for the design of omic studies of a syndrome like PE. They highlight the need for performing such studies in diverse and well-phenotyped patient populations that are large enough to characterize subsets of patients with shared pathophysiologies to then derive subset-specific signatures of sufficient predictive power.


Assuntos
Pré-Eclâmpsia , Proteômica , Feminino , Humanos , Gravidez , Proteômica/métodos , Pré-Eclâmpsia/diagnóstico , Proteoma/metabolismo , Biomarcadores , Proteínas Sanguíneas
5.
Sci Transl Med ; 13(592)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952678

RESUMO

Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10-40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10-7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies.


Assuntos
Início do Trabalho de Parto , Metaboloma , Proteoma , Biomarcadores , Feminino , Humanos , Início do Trabalho de Parto/imunologia , Início do Trabalho de Parto/metabolismo , Estudos Longitudinais , Gravidez
6.
Nat Mach Intell ; 2(10): 619-628, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33294774

RESUMO

The dense network of interconnected cellular signalling responses that are quantifiable in peripheral immune cells provides a wealth of actionable immunological insights. Although high-throughput single-cell profiling techniques, including polychromatic flow and mass cytometry, have matured to a point that enables detailed immune profiling of patients in numerous clinical settings, the limited cohort size and high dimensionality of data increase the possibility of false-positive discoveries and model overfitting. We introduce a generalizable machine learning platform, the immunological Elastic-Net (iEN), which incorporates immunological knowledge directly into the predictive models. Importantly, the algorithm maintains the exploratory nature of the high-dimensional dataset, allowing for the inclusion of immune features with strong predictive capabilities even if not consistent with prior knowledge. In three independent studies our method demonstrates improved predictions for clinically relevant outcomes from mass cytometry data generated from whole blood, as well as a large simulated dataset. The iEN is available under an open-source licence.

7.
Semin Immunopathol ; 42(4): 397-412, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32020337

RESUMO

Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Criança , Feminino , Feto , Humanos , Recém-Nascido , Trabalho de Parto Prematuro/etiologia , Placenta , Gravidez
8.
Front Immunol ; 10: 1305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263463

RESUMO

Preeclampsia is one of the most severe pregnancy complications and a leading cause of maternal death. However, early diagnosis of preeclampsia remains a clinical challenge. Alterations in the normal immune adaptations necessary for the maintenance of a healthy pregnancy are central features of preeclampsia. However, prior analyses primarily focused on the static assessment of select immune cell subsets have provided limited information for the prediction of preeclampsia. Here, we used a high-dimensional mass cytometry immunoassay to characterize the dynamic changes of over 370 immune cell features (including cell distribution and functional responses) in maternal blood during healthy and preeclamptic pregnancies. We found a set of eight cell-specific immune features that accurately identified patients well before the clinical diagnosis of preeclampsia (median area under the curve (AUC) 0.91, interquartile range [0.82-0.92]). Several features recapitulated previously known immune dysfunctions in preeclampsia, such as elevated pro-inflammatory innate immune responses early in pregnancy and impaired regulatory T (Treg) cell signaling. The analysis revealed additional novel immune responses that were strongly associated with, and preceded the onset of preeclampsia, notably abnormal STAT5ab signaling dynamics in CD4+T cell subsets (AUC 0.92, p = 8.0E-5). These results provide a global readout of the dynamics of the maternal immune system early in pregnancy and lay the groundwork for identifying clinically-relevant immune dysfunctions for the prediction and prevention of preeclampsia.


Assuntos
Pré-Eclâmpsia/imunologia , Gravidez/imunologia , Imunidade Adaptativa , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Imunoensaio , Inflamação/sangue , Inflamação/complicações , Inflamação/imunologia , Modelos Imunológicos , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/diagnóstico , Gravidez/sangue , Estudos Prospectivos , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia
9.
Brain ; 142(4): 978-991, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860258

RESUMO

Stroke is a leading cause of cognitive impairment and dementia, but the mechanisms that underlie post-stroke cognitive decline are not well understood. Stroke produces profound local and systemic immune responses that engage all major innate and adaptive immune compartments. However, whether the systemic immune response to stroke contributes to long-term disability remains ill-defined. We used a single-cell mass cytometry approach to comprehensively and functionally characterize the systemic immune response to stroke in longitudinal blood samples from 24 patients over the course of 1 year and correlated the immune response with changes in cognitive functioning between 90 and 365 days post-stroke. Using elastic net regularized regression modelling, we identified key elements of a robust and prolonged systemic immune response to ischaemic stroke that occurs in three phases: an acute phase (Day 2) characterized by increased signal transducer and activator of transcription 3 (STAT3) signalling responses in innate immune cell types, an intermediate phase (Day 5) characterized by increased cAMP response element-binding protein (CREB) signalling responses in adaptive immune cell types, and a late phase (Day 90) by persistent elevation of neutrophils, and immunoglobulin M+ (IgM+) B cells. By Day 365 there was no detectable difference between these samples and those from an age- and gender-matched patient cohort without stroke. When regressed against the change in the Montreal Cognitive Assessment scores between Days 90 and 365 after stroke, the acute inflammatory phase Elastic Net model correlated with post-stroke cognitive trajectories (r = -0.692, Bonferroni-corrected P = 0.039). The results demonstrate the utility of a deep immune profiling approach with mass cytometry for the identification of clinically relevant immune correlates of long-term cognitive trajectories.


Assuntos
Cognição/fisiologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/complicações , Proteína de Ligação a CREB/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/imunologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/imunologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina M , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neutrófilos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/complicações , Sobreviventes
10.
Am J Obstet Gynecol ; 218(3): 347.e1-347.e14, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29277631

RESUMO

BACKGROUND: Early detection of maladaptive processes underlying pregnancy-related pathologies is desirable because it will enable targeted interventions ahead of clinical manifestations. The quantitative analysis of plasma proteins features prominently among molecular approaches used to detect deviations from normal pregnancy. However, derivation of proteomic signatures sufficiently predictive of pregnancy-related outcomes has been challenging. An important obstacle hindering such efforts were limitations in assay technology, which prevented the broad examination of the plasma proteome. OBJECTIVE: The recent availability of a highly multiplexed platform affording the simultaneous measurement of 1310 plasma proteins opens the door for a more explorative approach. The major aim of this study was to examine whether analysis of plasma collected during gestation of term pregnancy would allow identifying a set of proteins that tightly track gestational age. Establishing precisely timed plasma proteomic changes during term pregnancy is a critical step in identifying deviations from regular patterns caused by fetal and maternal maladaptations. A second aim was to gain insight into functional attributes of identified proteins and link such attributes to relevant immunological changes. STUDY DESIGN: Pregnant women participated in this longitudinal study. In 2 subsequent sets of 21 (training cohort) and 10 (validation cohort) women, specific blood specimens were collected during the first (7-14 weeks), second (15-20 weeks), and third (24-32 weeks) trimesters and 6 weeks postpartum for analysis with a highly multiplexed aptamer-based platform. An elastic net algorithm was applied to infer a proteomic model predicting gestational age. A bootstrapping procedure and piecewise regression analysis was used to extract the minimum number of proteins required for predicting gestational age without compromising predictive power. Gene ontology analysis was applied to infer enrichment of molecular functions among proteins included in the proteomic model. Changes in abundance of proteins with such functions were linked to immune features predictive of gestational age at the time of sampling in pregnancies delivering at term. RESULTS: An independently validated model consisting of 74 proteins strongly predicted gestational age (P = 3.8 × 10-14, R = 0.97). The model could be reduced to 8 proteins without losing its predictive power (P = 1.7 × 10-3, R = 0.91). The 3 top ranked proteins were glypican 3, chorionic somatomammotropin hormone, and granulins. Proteins activating the Janus kinase and signal transducer and activator of transcription pathway were enriched in the proteomic model, chorionic somatomammotropin hormone being the top-ranked protein. Abundance of chorionic somatomammotropin hormone strongly correlated with signal transducer and activator of transcription-5 signaling activity in CD4 T cells, the endogenous cell-signaling event most predictive of gestational age. CONCLUSION: Results indicate that precisely timed changes in the plasma proteome during term pregnancy mirror a proteomic clock. Importantly, the combined use of several plasma proteins was required for accurate prediction. The exciting promise of such a clock is that deviations from its regular chronological profile may assist in the early diagnoses of pregnancy-related pathologies, and point to underlying pathophysiology. Functional analysis of the proteomic model generated the novel hypothesis that chrionic somatomammotropin hormone may critically regulate T-cell function during pregnancy.


Assuntos
Idade Gestacional , Período Pós-Parto/sangue , Trimestres da Gravidez/sangue , Gravidez/sangue , Proteoma/metabolismo , Adulto , Algoritmos , Biomarcadores/sangue , Linfócitos T CD4-Positivos/metabolismo , Feminino , Ontologia Genética , Glipicanas/sangue , Granulinas/sangue , Humanos , Janus Quinases/sangue , Modelos Teóricos , Lactogênio Placentário/sangue , Valor Preditivo dos Testes , Fatores de Transcrição STAT/sangue , Fator de Transcrição STAT5/sangue , Transdução de Sinais
11.
Sci Immunol ; 2(15)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864494

RESUMO

The maintenance of pregnancy relies on finely tuned immune adaptations. We demonstrate that these adaptations are precisely timed, reflecting an immune clock of pregnancy in women delivering at term. Using mass cytometry, the abundance and functional responses of all major immune cell subsets were quantified in serial blood samples collected throughout pregnancy. Cell signaling-based Elastic Net, a regularized regression method adapted from the elastic net algorithm, was developed to infer and prospectively validate a predictive model of interrelated immune events that accurately captures the chronology of pregnancy. Model components highlighted existing knowledge and revealed previously unreported biology, including a critical role for the interleukin-2-dependent STAT5ab signaling pathway in modulating T cell function during pregnancy. These findings unravel the precise timing of immunological events occurring during a term pregnancy and provide the analytical framework to identify immunological deviations implicated in pregnancy-related pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA