Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943681

RESUMO

The rise in bacterial resistance to currently used antibiotics is the main focus of medical researchers. Bacterial multidrug resistance (MDR) is a major threat to humans, as it is linked to greater rates of chronic disease and mortality. Hence, there is an urgent need for developing effective strategies to overcome the bacterial MDR. Metal-organic frameworks (MOFs) are a new class of porous crystalline materials made up of metal ions and organic ligands that can vary their pore size and structure to better encapsulate drug candidates. This study reports the synthesis of ribose-coated Cu-MOFs for enhanced bactericidal activity of chloramphenicol (CHL) against Escherichia coli (resistant and sensitive) and MDR Pseudomonas aeruginosa. The synthesized Cu-MOFs were characterized with DLS, FT-IR, powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were further investigated for their efficacy against selected bacterial strains. The synthesized ribose-coated Cu-MOFs were observed as spherical shape structure with the particle size of 562.84 ± 13.42 nm. CHL caused the increased inhibition of E. coli and MDR P. aeruginosa with significantly reduced MIC and MBIC values after being encapsulated in ribose-coated Cu-MOFs. The morphological analysis of the bacterial strains treated with ribose-coated CHL-Cu-MOFs showed the complete morphological distortion of both E. coli and MDR P. aeruginosa. Based on the results of the study, it can be suggested that ribose-coated Cu-MOFs may be an effective alternate candidate to overcome the MDR and provide new perspective for the treatment of MDR bacterial infections.

2.
Mater Sci Eng C Mater Biol Appl ; 105: 110111, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546392

RESUMO

Multiple drug resistant (MDR) has become a major issue in developing countries. MDR bacterial infections lead to significant increase in morbidity, mortality and cost of prolonged treatments. Therefore, designing of strategies for improving the antimicrobial potential of the therapeutic agents are highly required. Metal organic frameworks (MOFs) are highly tunable hybrid material, consist of metal ions linked together by organic bridging ligands have been used as an efficient drug delivery carrier because of their biodegradability, low toxicity and structure integrity upon loading and functionalizing process. Current study was based on the synthesis of chitosan coated MOFs with enhanced contact with S. aureus cell surface. Chitosan is deacetylated derivative of chitin and capable for non-bonding interaction with negatively charged bacterial cell leading to enhanced contact of MOFs with S. aureus. Chitosan coated MOFs were characterized with various techniques such as atomic force microscopy, scanning electron microscopy, DLS, FT-IR, TGA, DSC and Powder X-ray diffraction. They were also studied for their efficacy on resistant S. aureus, results revealed that Vancomycin bactericidal activity significantly increased upon loading in chitosan coated MOFs and caused increased inhibition of resistant S. aureus. AFM analysis of S. aureus strains clearly revealed complete distortion of morphology by treating with chitosan modified drug loaded MOFs. Findings of the current study suggest the potential of chitosan coated MOFs for reversing bacterial resistance against Vancomycin and provide new perspectives for improved antibiotic therapy of infections associated with MDR.


Assuntos
Antibacterianos/farmacologia , Quitosana/síntese química , Materiais Revestidos Biocompatíveis/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Estruturas Metalorgânicas/síntese química , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Varredura Diferencial de Calorimetria , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA