RESUMO
The aim of this study was to evaluate the characteristics of dually modified sago starch by acid hydrolysis (AH)-hydroxypropylation (HP). For this purpose, sago starch was modified with the combination by AH (5-20 h hydrolysis times) followed by HP (5%-25% ratio of propylene oxide) processes. The results showed that the dual modification of the sago starch structure didn't have a significant effect on the size of starch granules, and the granule size was in the range of 0.005-0.151 µm; however, the pasting properties and the glass transition temperature decreased significantly (p < .05). Increasing the level of propylene oxide from 5% to 25% caused a significant increase in the substitution degree (DS) and swelling ability of starches and reduced the syneresis, while with increasing acid hydrolysis time from 5 h to 20 h, starch swelling decreased and syneresis increased (p < .05). AH process at high hydrolysis times (20 h) increased the gelatinization temperatures and decreased retrogradation temperatures. Increasing the level of propylene oxide in both single and dual modification reduced the temperatures and enthalpy of gelatinization and retrogradation of sago starch. In summary, dually modified sago starch has a great potential to use in specific food products such as frozen dough or frozen bakery products.
RESUMO
A novel intelligent pH-sensing indicator based on gelatin film and anthocyanin extracted from dragon fruit skin (Hylocereus polyrhizus) (DFSE) as a natural dye was developed to monitor food freshness by the casting method. Anthocyanin content of DFSE was 15.66 ± 1.59 mg/L. Dragon fruit bovine gelatin films were characterized by Fourier transform infrared spectroscopy (FTIR) and observed by a scanning electron microscope (SEM). Moisture content, mechanical properties, water solubility, water vapor permeability (WVP), light transmittance, color, and pH-sensing evaluations were evaluated for potential application. FTIR spectroscopy revealed that the extracted anthocyanin could interact with the other film components through hydrogen bonds. When the extract was added, films showed a smooth and clear surface as observed by SEM. The addition of anthocyanin increased the moisture content, thickness, and water solubility of the films, but decreased the WVP and light transmittance of films. Also, the incorporation of 15% v/v DFSE decreased the tensile strength from 17.04 to 12.91 MPa, increasing the elongation at break from 91.19% to 107.86%. The films showed higher ΔE with increasing DFSE content, which indicated that the film had good color variability. A significant difference in the color of the films was observed with exposure to different pH buffer solutions. The findings demonstrated that gelatin film incorporated with DFSE could be used as a visual indicator of pH variations to monitor the freshness of foods during storage time.