Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 881: 163516, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059138

RESUMO

Soil aquifer treatment systems are known to further remove contaminants in wastewater effluent when applied through infiltration into the ground. Dissolved organic nitrogen (DON) in the effluent, a precursor for nitrogenous disinfection by-products (DBPs) such as N-nitrosodimethylamine (NDMA), is of great concern upon subsequent use of the groundwater infiltered into the aquifer. In this study, the vadose zone of the soil aquifer treatment system was simulated using 1 m laboratory soil columns under unsaturated conditions representing the vadose zone. The final effluent of a water reclamation facility (WRF) was applied to these columns to investigate the removal of N species with a focus on DON, as well as NDMA precursors. DON removal achieved was up to 99 % with an average of 68 % and was accompanied by a 52 % nitrate increase suggesting the occurrence of ammonification and nitrification through the soil columns. Around 62 % of total DON removal was seen at <10 cm travel distance, which was in accordance with higher adenosine triphosphate (ATP) concentrations at the top of the column due to more oxygen and organic matter availability. Total Dissolved N removal was drastically lowered to 4.5 % in the same column without microbial growth, which highlights the importance of biodegradation. The columns were capable of removing 56 % of the fluorescent dissolved organic matter (FDOM). Soil columns could remove NDMA precursors up to 92 % through the column with the initial concentration of 89.5 ng/L, possibly due to the removal of DON fractions. The results demonstrate the capability of the vadose zone in further treatment of DON and other organic matter before reaching the groundwater through infiltration or indirect discharge to surface water. Differences in applied water quality and the site-specific oxic conditions in SAT systems could lead to variable removal efficiencies.

2.
Water Environ Res ; 93(11): 2819-2827, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34528319

RESUMO

There have been multiple reports of COVID-19 virus, SARS-CoV-2 RNA presence in influent wastewater of water reclamation facilities (WRFs) across the world. In this study, the removal of SARS-CoV-2 RNA was investigated in a WRF by collecting samples from various stages relayed to hydraulic retention time (HRT) and analyzed for viral RNA (N1 and N2) gene markers and wastewater characteristics. SARS-CoV-2 RNA was detected in 28 out of 28 influent wastewater and primary effluent samples. Secondary effluent showed 4 out of 9 positive samples, and all tertiary and final effluent samples were below the detection limit for the viral markers. The reduction was significant (p value < 0.005, one-way analysis of variance [ANOVA] test) in secondary treatment, ranging from 1.4 to 2.0 log10 removal. Adjusted N1 viral marker had a positive correlation with total suspended solids, total Kjeldahl nitrogen, and ammonia concentrations (Spearman's ρ = 0.61, 0.67, and 0.53, respectively, p value < 0.05), while demonstrating a strongly negative correlation with HRT (Spearman's ρ = -0.58, p value < 0.01). PRACTITIONER POINTS: Viral RNA was present in all samples taken from influent and primary effluent of a WRF. SARS-CoV-2 gene marker was detected in secondary effluent in 4 out of 9 samples. Tertiary and final effluent samples tested nondetect for SARS-CoV-2 gene markers. Up to 0.5 and 2.0 log10 virus removal values were achieved by primary and secondary treatment, respectively.


Assuntos
COVID-19 , Purificação da Água , Biomarcadores , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias , Água
3.
Chemosphere ; 269: 129406, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33387791

RESUMO

Soil/aquifer-based treatment systems improve wastewater effluent quality by removing trace contaminants in the soil and/or aquifer during groundwater recharge. This paper critically reviews these systems with a focus on removing nitrogen, particularly low levels of dissolved organic nitrogen (DON) present in the wastewater effluent. DON in wastewater effluent is a concern because of its contribution to nitrogen concentration in surface or groundwater and its role as a precursor of nitrogenous disinfection by-products, which are harmful to human health. Biodegradation and sorption are the main DON removal mechanisms in the subsurface environment where most of the removal happens in the vadose zone. Different factors such as temperature, redox conditions, retention time, indigenous microbial community, and soil type affect DON removal in soil/aquifer-based treatment systems. Lack of sufficient current knowledge underlines the need for designing lab/field scale systems for further determination of the relative contribution of biodegradation and sorption, optimal hydraulic loading rate, and the relationship between DON characteristics such as functional groups and physiochemical processes and its removal. Future research needs for DON removal in soil/aquifer-based treatment systems are identified.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Desnitrificação , Humanos , Nitrogênio , Solo , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA