Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Avicenna J Phytomed ; 13(6): 675-687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106635

RESUMO

Objective: Multiple sclerosis (MS) is the most prevalent neurological disability among young adults. Anti-inflammatory drugs have shown to be effective in MS. The anti-inflammatory and antioxidative properties of Zingiber officinale (ginger) have been shown and proven in many phytotherapy studies. This study aimed to evaluate effects of ginger essential oil on preventing myelin degradation in a rat model of MS. Materials and Methods: In this study, we divided 49 rats into 7 groups; 4 control and 3 experimental groups that received 3 different dose of ginger essential oil (50, 100, and 150 mg/kg/day) for treatment of cuprizone-induced demyelinated rats. Basket test and transmission electron microscopy were performed in this study. Olig2 and Mbp genes and proteins were respectively evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Results: Histologically, cuprizone created demyelination in the corpus callosum fibers. Remyelination of fibers was seen in the group treated with the medium dose of ginger essence, by toluidine blue staining. transmission electron microscopy (TEM) revealed increased thickness of the myelin of fibers in all 3 treated groups (p<0.05). Feeding by the medium dose of ginger essence significantly increased the levels of Mbp and Olig2 genes (p<0.05). ELISA test showed that 100 mg/kg/day of ginger caused a significant difference between experimental and the cuprizone-induced groups (p<0.05). Conclusion: Our findings suggested that administration of ginger essential oil prevented demyelination and improved remyelination of rats` corpus callusom and can be used as an effective substance in the prevention of MS.

2.
Int J Dev Biol ; 67(3): 101-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937413

RESUMO

Valproic acid (VPA), a neuroprotective agent and inhibitor of GSK3-ß, along with human Adipose-Derived Stem Cells (hADSCs) have been proposed to be potential therapeutic agents for neurodegenerative disorders. In the present study, we have assessed the effects of VPA alone or in combination with hADSCs on oligodendrocyte differentiation, remyelination, and functional recovery in a mouse model of Multiple Sclerosis (MS). These MS-model mice were randomly divided into cuprizone, sham, VPA, hADSC, and VPA/hADSC groups, with 10 mice considered a control group (healthy mice). The hanging wire test was used to measure motor behavior. To estimate the level of myelination, we performed toluidine blue staining and immunofluorescent staining for OLIG2 and MOG-positive cells. Real-time PCR was used to evaluate the expression of ß-catenin, human and mouse Mbp, Mog, and Olig2 genes. Remyelination and motor function improved in mice receiving VPA, hADSCs, and especially VPA/hADSCs compared to the Cup and Sham groups (P < 0.01). Additionally, the number of MOG and OLIG2 positive cells significantly increased in the VPA/hADSCs group compared to the Cup and Sham groups (P < 0.01). The expression of ß-catenin, myelin and the other oligodendrocyte-specific genes was significantly higher in the VPA recipient groups. Valproic acid can enhance the differentiation of stem cells into oligodendrocytes, making it a potential candidate for MS treatment.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Ácido Valproico/farmacologia , beta Catenina , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Diferenciação Celular , Oligodendroglia/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Mol Biol Rep ; 50(2): 1617-1625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526850

RESUMO

BACKGROUND: The application of neuroprotective agents in combination with stem cells is considered a potential effective treatment for multiple sclerosis (MS). Therefore, the effects of lithium chloride as a neuroprotective agent and a GSK3-ß inhibitor were evaluated in combination with human adipose derived stem cells on re-myelination, oligodendrocyte differentiation, and functional recovery. METHODS: After inducing a mouse model of MS and proving it by the hanging wire test, the mice were randomly assigned to five experimental groups: Cup, Sham, Li, hADSC, and Li + hADSC. Additionally, a control group with normal feeding was considered. Finally, toluidine blue staining was carried out to estimate the level of myelination. Furthermore, immunofluorescent staining was used to evaluate the mean of OLIG2 and MOG positive cells. The mRNA levels of ß-Catenin, myelin and oligodendrocyte specific genes were determined via the Real-Time PCR. RESULTS: The results of the hanging wire test and toluidine blue staining showed a significant increase in myelin density and improvements in motor function in groups, which received lithium and stem cells, particularly in the Li + hADSC group compared with the untreated groups (P < 0.01). Moreover, immunostaining results indicated that the mean percentages of MOG and OLIG2 positive cells were significantly higher in the Li + hADSC group than in the other groups (P < 0.01). Finally, gene expression studies indicated that the use of lithium could increase the expression of ß-Catenin, myelin and oligodendrocyte specific genes. CONCLUSION: The use of Lithium Chloride can increase stem cells differentiation into oligodendrocytes and improve re-myelination in MS.


Assuntos
Esclerose Múltipla , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/farmacologia , Cloreto de Lítio/farmacologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Células-Tronco/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Inibidores Enzimáticos/farmacologia
4.
Cell J ; 24(12): 748-756, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527347

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is known as a nerve tissue disorder, which causes demyelination of central nervous system (CNS) fibers. Cell-based treatment is a novel strategy for the treatment of demyelinating diseases such as MS. Adipose-derived stem cells (ADSCs) have neuroprotective and neuroregenerative effects and pregnenolone as a neurosteroid has remarkable roles in neurogenesis. We intend to examine the impact of intraventricular transplantation of human ADSCs and systemic injection of pregnenolone on the remyelination of a rat model cuprizone-induced demyelination. MATERIALS AND METHODS: This experimental study was performed on 36 male Wistar rats that received a regular diet and a cuprizone diet for 3 weeks for M.S. induction. Through lipoaspirate surgery, human-ADSCs (hADSCs) were obtained from a patient. Six groups of rats (n=6): healthy, MS, sham, pregnenolone injection, ADSCs transplantation, and pregnenolone injection/ADSCs transplantation were included in this study. For assessment of remyelination, transmission electron microscopy (TEM), immunohistochemistry staining, real-time reverse transcription-polymerase chain reaction (RT-PCR), and enzyme-linked immunosorbent assay (ELISA) were performed. RESULTS: TEM outcomes revealed an increase in the thickness of the fibers myelin in the treatment groups (P<0.05). We also observed a significant upregulation of MBP, PDGFR-α, and MOG after treatment with hADSCs and pregnenolone compared to other study groups (P<0.001). These results were confirmed by immunostaining analysis. Moreover, there was no significant difference between the ADSCs/pregnenolone group and the control group regarding the level of MBP, A2B5, and MOG proteins in ELISA. CONCLUSION: Our data implied that the remyelination and cell recovery were more improved by intraventricular ADSCs transplantation and pregnenolone injection after inducing a rat model of MS.

5.
Iran Biomed J ; 26(4): 330-9, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029169

RESUMO

Background: Multiple sclerosis (MS) is the most prevalent neurological disability of young adults. Anti-inflammatory drugs have relative effects on MS. The anti-inflammatory and antioxidative effects of Zingiber officinale (ginger) have been proven in some experimental and clinical investigations. The aim of this study was to evaluate the effects of ginger extract on preventing myelin degradation in a rat model of MS. Methods: Forty nine male Wistar rats were used in this study and divided into four control groups: the normal group, cuprizone-induced group, sham group (cuprizone [CPZ] + sodium carboxymethyl cellulose [NaCMC]), standard control group (fingolimod + cuprizone), including three experimental groups of CPZ, each receiving three different doses of ginger extract: 150, 300, and 600mg/kg /kg/day. Results: Ginger extract of 600 mg/kg prevented corpus callosum from demyelination; however, a significant difference was observed in the fingolimod group (p < 0.05). Difference in the CPZ group was quite significant (p < 0.05). Conclusion: Treatment with ginger inhibited demyelination and alleviated remyelination of corpus callosum in rats. Therefore, it could serve as a therapeutic agent in the MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Zingiber officinale , Animais , Anti-Inflamatórios/uso terapêutico , Corpo Caloso/metabolismo , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/prevenção & controle , Modelos Animais de Doenças , Cloridrato de Fingolimode , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/metabolismo , Ratos , Ratos Wistar
6.
Dent Res J (Isfahan) ; 18: 57, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497692

RESUMO

BACKGROUND: The progressive destruction of nerve cells in nervous system will induce neurodegenerative diseases. Recently, cell-based therapies have attracted the attention of researchers in the treatment of these abnormal conditions. Thus, the aim of this study was to provide a simple and efficient way to differentiate human dental pulp stem cells into neural cell-like to achieve a homogeneous population of these cells for transplantation in neurodegenerative diseases. MATERIALS AND METHODS: In this basic research, human dental pulp stem cells were isolated and characterized by immunocytochemistry and flow cytometry techniques. In the following, the cells were cultured using hanging drop as three-dimensional (3D) and tissue culture plate as 2D techniques. Subsequently, cultured cells were differentiated into neuron cell-like in the presence of FGF and Sonic hedgehog (SHH) factors. Finally, the percentage of cells expressing Neu N and ß tubulin III markers was determined using immunocytochemistry technique. Finally, all data were analyzed using the SPSS software. RESULTS: Flow cytometry and immunocytochemistry results indicated that human dental pulp-derived stem cells were CD90, CD106-positive, but were negative for CD34, CD45 markers (P ≤ 0.001). In addition, the mean percentage of ß tubulin positive cells in different groups did not differ significantly from each other (P ≥ 0.05). Nevertheless, the mean percentage of Neu N-positive cells was significantly higher in differentiated cells with embryoid bodies' source, especially in the presence of SHH than other groups (P ≤ 0.05). CONCLUSION: It is concluded that due to the wide range of SHH functions and the facilitation of intercellular connections in the hanging droop method, it is recommended that the use of hanging drop method and SHH factor can be effective in increasing the efficiency of cell differentiation.

7.
Life Sci ; 282: 119812, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265362

RESUMO

AIMS: Among all the treatments for Multiple Sclerosis, stem cell transplantation, such as ADSCs, has attracted a great deal of scientific attention. On the other hand, Edaravone, as an antioxidant component, in combination with stem cells, could increase the survival and differentiation potential of stem cells. MAIN METHODS: 42 rats were divided into: Control, Cuprizone (CPZ), Sham, Edaravone (Ed), hADSCs, and Ed/hADSCs groups. Following induction of cuprizone, induced MS model, behavioral tests were designed to evaluate motor function during. Luxal fast blue staining was done to measure the level of demyelination and remyelination. Immunofluorescent staining was used to evaluate the amount of MBP, OLIG2, and MOG proteins. The mRNA levels of human MBP, MOG, and OLIG2 and rat Mbp, Mog, and Olig2 were determined via RT-PCR. KEY FINDINGS: Flow cytometry analysis exhibited that the extracted cells were positive for CD73 (93.8 ± 3%) and CD105 (91.6 ± 3%), yet negative for CD45 (2.06 ± 0.5%). Behavioral tests, unveiled a significant improvement in the Ed (P < 0.001), hADSCs (P < 0.001), and Ed/hADSCs (P < 0.001) groups compared to the others. In the Ed/hADSCs group, the myelin density was significantly higher than that in the Ed treated and hADSCs treated groups (P < 0.01). Edaravone and hADSCs increased the expression of Mbp, Mog, and Olig2 genes in the cuprizone rat models. Moreover, significant differences were seen between the Ed treated and hADSCs treated groups and the Ed/hADSCs group (P < 0.05 for Mbp and Olig2 and P < 0.01 for Mog). SIGNIFICANCE: Edaravone in combination with hADSCs reduced demyelination and increased oligodendrogenesis in the cuprizone rat models.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Edaravone/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Esclerose Múltipla , Oligodendroglia/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Xenoenxertos , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Ratos
8.
Adv Biomed Res ; 10: 49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127576

RESUMO

BACKGROUND: Growth factors and chemical stimulants have key role in cartilage tissue engineering, but these agents have unfavorable effects on cells. Avocado soybean unsaponifiables (ASU) has chondroprotective and anti-inflammatory effects. In this study, fibrin2nanoparticles (FNP)/ASU, as a new delivery system, with stem cells applied for cartilage tissue engineering in poly (lactic-co-glycolic) acid (PLGA) scaffold. MATERIALS AND METHODS: FNP/ASU prepared by freeze milling and freeze drying. NFP/ASU was characterized by dynamic light scattering (DLS). PLGA-NFP/ASU scaffold was fabricated and assessed by scanning electron microscope (SEM). Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene/protein expression evaluated. RESULTS: The results of DLS and SEM indicated that nanoparticles had high quality. The expression of type II collagen and SOX9 and aggrecan (ACAN) genes in differentiated cells in the presence of ASU was significantly increased compared with the control group (P and lt; 0.01), on the other hand, type I collagen expression was significantly decreased and western blot confirmed it. CONCLUSIONS: This study indicated FNP/ASU loaded in PLGA scaffold has excellent effect on chondrogenic differentiation of hADSCs and tissue engineering.

9.
Cell J ; 22(4): 565-571, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32347051

RESUMO

OBJECTIVE: Astaxanthin (AST) is a carotenoid with anti-oxidative, anti-inflammatory, and anti-apoptotic properties. It has also been reported that AST exerts protective effects against neurodegenerative diseases and reduces oxidative stress-induced the central nervous system (CNS) injury. In this study, we aimed to evaluate the protective potential of AST in inhibiting demyelination and oligodendrocyte death in a rat model of multiple sclerosis (MS). MATERIALS AND METHODS: In this experimental study, forty Wistar rats were randomly assigned to four experimental groups: control group (with normal feeding), cuprizone (CPZ group) that daily received 0.6% CPZ for 4 weeks, sham group that daily received 0.6% CPZ plus dimethyl sulfoxid (DMSO) for 4 weeks, and AST group that daily received 0.6% CPZ and after 12 hours were treated with AST (3 mg/kg), for 4 weeks. Muscle strength was evaluated by the behavioral basket test at the end of every week for 4 weeks. Luxol Fast Blue (LFB) staining was utilized for the identification of myelination and demyelination. Myelin density was evaluated by the ImageJ software. The expression of A2B5 (oligodendrocyte precursor protein) and myelin oligodendrocyte protein (MOG) were assessed by immunohistochemistry (IHC) and the expression of myelin basic protein (MBP), MOG, and platelet-derived growth factor-alpha (PDGFR-α) genes was examined by the real-time polymerase chain reaction (RT-PCR) technique. RESULTS: The administration of AST reduced the oligodendrocyte damage and myelin sheath disruption in a rat model of MS. The basket behavioral test showed the improvement of muscle strength in the AST group compared with CPZ and sham groups. Besides, the results of real-time PCR and IHC indicated the beneficial effects of AST in declining demyelination and oligodendrocyte death in a rat model of MS. CONCLUSION: AST reduces damages to the myelin sheath and oligodendrocyte death in a rat model of MS.

10.
J Mol Neurosci ; 70(7): 1088-1099, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314194

RESUMO

Adipose-derived stem cells (ASCs) have neuroprotective effects, and their repair ability has been approved in neurodegenerative studies. Pregnenolone as a neurosteroid plays significant roles in neurogenesis. We aimed to consider the effect of ADSCs and pregnenolone injection on the multiple sclerosis (MS) model created by cuprizone. Male Wistar rats (n = 36) were fed with an ordinary diet or a diet with cuprizone (0.6%) for 3 weeks. H-ADSCs were taken from patients with lipoaspirate surgery. The rats were divided into six groups (n = 6): healthy, MS, sham, pregnenolone injection, ADSCs injection, pregnenolone and ADSCs injection. Behavioral test, histological examination and TEM were conducted. The specific markers for myelin and cell differentiation were assessed using immunohistochemistry staining. Additionally, the measure of MBP and MOG gene expression and the amount of related proteins were determined using real-time RT-PCR and ELISA techniques, respectively. Histologic results showed that induced demyelination in corpus callosum fibers. TEM revealed an increased thickness of myelin in fibers in the treated groups (P < 0.05). Injection of hADSC and pregnenolone significantly increased the expression levels of MBP and MOG (P < 0.001). The mean percentage of MOG and MBP markers were significantly increased in the treated groups compared to MS and sham groups (P < 0.05). Moreover, the OD level of MBP and MOG proteins showed that their values in the ADSCs/pregnenolone group were close to those of the control group without a significant difference. Our data indicated the remyelination potency and cell differentiation can improve with ADSCs and pregnenolone treatments in the multiple sclerosis model which created by cuprizone in rats.


Assuntos
Corpo Caloso/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Esclerose Múltipla/terapia , Bainha de Mielina/metabolismo , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Corpo Caloso/patologia , Cuprizona/toxicidade , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Esclerose Múltipla/etiologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Pregnenolona/administração & dosagem , Pregnenolona/uso terapêutico , Ratos , Ratos Wistar
11.
Adv Biomed Res ; 9: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181230

RESUMO

BACKGROUND: Nowadays, cartilage tissue engineering is the best candidate for regeneration of cartilage defects. This study evaluates the effect of fibrin/icariin (ICA) nanoparticles (F/I NPs) on chondrogenesis of stem cells. MATERIALS AND METHODS: F/I NPs were characterized by Dynamic Light Scattering DLS. Poly (lactic-co-glycolic) acid (PLGA)-F/I NP scaffold was fabricated and assessed by scanning electron microscope. Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene expression were analyzed by the 3-(4, 5- dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. MTT assay and real-time polymerase chain reaction (RT-PCR). RESULTS: The size and surface charge of F/I NP were about 28-30 nm and - 17, respectively. The average of pore size of PLGA and PLGA-fibrin/ICA was 230 and 340 µm, respectively. Cell viability of differentiated cells in P/F group was higher than others significantly (P ≤ 0.05). Furthermore, quantitative RT-PCR analysis demonstrated that ICA upregulated cartilaginous-specific gene expression. Furthermore, the results of the expression of type I collagen revealed that ICA downregulated this gene significantly (P < 0.01). CONCLUSIONS: The results indicated that F/I NP could be a potential factor for chondrogenesis of stem cells and downregulation of fibrocartilage marker.

12.
Dent Res J (Isfahan) ; 17(1): 54-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32055294

RESUMO

BACKGROUND: The use of stem cells, growth factors, and scaffolds to repair damaged tissues is a new idea in tissue engineering. The aim of the present study is the investigation of Avocado/soybean (A/S) effects on chondrogenic differentiation of human adipose-derived stem cells (hADSCs) in micromass culture to access cartilage tissue with high quality. MATERIALS AND METHODS: In this an experimental study After hADSCs characterization, chondrogenic differentiation was induced using transforming growth factor beta 1 (TGF-ß1) (10 ng/ml) and different concentrations (5, 10, and 20 µg/ml) of A/S in micromass culture. The efficiency of A/S on specific gene expression (types I, II, and X collagens, SOX9, and aggrecan) was evaluated using quantitative polymerase chain reaction. In addition, histological study was done using hematoxylin and eosin and toluidine blue staining all data were analyzed using one-way analysis of variance (ANOVA) and P ≤ 0.05 was considered to be statistically significant. RESULTS: The results of this study indicated that A/S can promote chondrogenic differentiation in a dose-dependent manner. In particular, 5 ng/ml A/S showed the highest expression of type II collagen, SOX9, and aggrecan which are effective and important markers in chondrogenic differentiation. In addition, the expression of types I and X collagens which are hypertrophic and fibrous factors in chondrogenesis is lower in present of 5 ng/ml A/S compared with TGF-ß1 group (P ≤ 0.05). Moreover, the sulfated glycosaminoglycans in the extracellular matrix and the presence of chondrocytes within lacuna were more prominent in 5 ng/ml A/S group than other groups. CONCLUSION: It can be concluded that A/S similar to TGF-ß1 is able to facilitate the chondrogenic differentiation of hADSCs and do not have adverse effects of TGF-ß1. Thus, TGF-ß1 can be replaced by A/S in the field of tissue engineering.

13.
Res Pharm Sci ; 14(5): 424-431, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31798659

RESUMO

Multiple sclerosis (MS) is a demyelinating disease that causes chronic inflammation in the central nervous system. The aim of this study was to investigate the effects of apamin administration on myelination process. MS was induced by feeding cuprizone pellets (0.2%) for 6 weeks (demyelination phase) followed by normal feeding for additional 2 weeks (remyelination phase). Briefly, C57BL/6 male mice were randomly divided into six groups. Group 1, received the regular food pellets. Group 2 contained two subgroups of 6 animals each (n = 2 × 6). First group received cuprizone for 6 weeks and the sacrificed while the second group after 6 weeks of cuprizone, received no treatment for additional 2 weeks. Group 3 (co-treatment group) was composed of two subgroups of 6 animals each (n = 2 × 6). Both subgroups received apamin (100 µg/kg) intraperitoneally twice a week for 6 weeks. First subgroup terminated at this time and the second subgroup was fed normal diet for two additional weeks. Group 4 (post-treatment, n = 6) received apamin (100 µg/kg) intraperitoneally twice a week for 2 weeks after cuprizone secession. Groups 5 and 6 (vehicle, n = 6 in each group) received phosphate buffered saline as the vehicle of apamin during demyelination and remyelination phase. At the end of each phase, mice were deeply anesthetized and perfused. Groups 5 and 6 (vehicle) received PBS as the vehicle during both phases. Mice were anesthetized, perfused with PBS through their heart, and their brains were removed. Brain sections stained with luxol fast blue and the images were analyzed. Apamin co-treatment significantly increased the myelin content as compared to the cuprizone group. Also, mild elevation in the myelinated areas was observed with apamin post-treatment in comparison with remyelination phase. Our results revealed that apamin prevents myelin destruction more significantly as compared to remyelination process. This observation explains the possible role of apamin in inhibiting the activation of the microglia cells than stimulation of the oligodendrocytic precursor cells.

14.
Res Pharm Sci ; 14(3): 209-215, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31160898

RESUMO

The striatal dopamine (DA) deficiency is known as the main cause of the clinical picture of Parkinson's disease (PD). The disease is a progressive degeneration of dopaminergic neurons in the striatum. The treatment of PD is based on compensation for the brain's supply of DA lost by drug therapy, deep brain stimulation, surgery, gene and cell therapies. Clinical studies have focused on the utility of stem cell-based therapies in PD. Embryonic and mesenchymal stem cells (MSCs) are widely used. Recently, human adipose derived stem cells (hADSCs) have been considered as a suitable source of tissue for this purpose. In this project, hADSCs differentiated into dopaminergic neurons and the specificity of the cell preparations was examined. Human adipose tissues were collected from healthy volunteers undergoing liposuction and hADSCs were isolated by collagenase-based enzymatic method. Flow cytometry was performed using the surface cluster of differentiation (CD) markers to confirm the cell typical properties. Then hADSCs were differentiated to dopaminergic neurons in neurobasal medium in the presence of differentiation factors and confirmed by immunocytochemistry via neuronal and dopaminergic markers. The isolated hADSCs were cultured and identified by the expression of MSCs surface markers including CD90, and CD44. These cells did not express hematopoietic surface markers such as CD45 and CD14. Differentiated cells express neuronal marker NeuN and dopaminergic marker tyrosine hydroxylase (TH). It is concluded that hADSCs can be easily taken from the patient's own body and differentiated into dopaminergic cells having a lower risk of transplant rejection.

15.
Iran J Neurol ; 17(1): 24-30, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30186556

RESUMO

Background: Stem cell-based therapy is a new method for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Human adipose-derived stem cells (hADSCs) are a kind of adult stem cells which have a higher frequency in the fat tissue and have the ability to differentiate into other cell types outside their lineage. Due to some serious adverse events of cell-based therapy such as tumorigenic potential, the aim of this study was to evaluate of hADSCs differentiation into oligodendrocytes as a valuable way for future cell transplantation. Methods: hADSC were isolated from lipoaspirate samples of human abdominal fat. After hADSC characterization via flow cytometry, the cells were induced to oligodendrocytes using a special differentiation medium. Finally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), immunocytochemistry, and real-time polymerase chain reaction (RT-PCR) techniques were used for the evaluation of differentiated cells. Results: Flow cytometry indicated that hADSCs were CD105- and CD49-positive, but were negative for CD31 and CD45 markers. In addition, immunocytochemistry analysis revealed that a high percent of differentiated cells expressed oligodendrocyte progenitor cells markers [A2B5 and oligodendrocyte transcription factor (Olig2)] which were significantly higher than myelin basic protein (MBP) which is mature oligodendrocytes marker. Moreover, a very low percentage of differentiated cells expressed glial fibrillary acidic protein (GFAP) marker. Finally, real-time reverse transcription PCR analysis confirmed the results of immunocytochemistry. Conclusion: Since hADSCs have the potential to differentiate into multi-lineage cells and due to their additional characteristics such as immunomodulatory and neuroprotective properties, it seems that these cells may be an ideal cell source for oligodendrocytes differentiation.

16.
Comp Clin Path ; 27(4): 1023-1028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008636

RESUMO

Parkinson's disease (PD) is one of the most neurodegenerative disorders which can lead to severe neural disability and neurological defects. Cell-based therapy using fully differentiated cells is a new method for the treatment of this abnormal condition. In the present study, we investigated the effects of 6-bromoindirubin-3'-oxime (BIO) on dopaminergic differentiation of human immortalized RenVm cells in order to obtain a set of fully differentiated cells for transplantation in Parkinson's disease. To this end, the immortalized RenVm cells were induced to dopaminergic differentiation using a neuro basal medium supplemented with N2 and different concentrations (75, 150, 300, 600, and 1200 nM) of BIO for 4, 8, and 12 days. The efficiency of dopaminergic differentiation was determined using immunocytochemistry for tyrosine hydroxylase expressions. In addition, the expression of a ß-catenin marker was measured using the western blot technique. The results of immunocytochemistry revealed that the mean percentage of Tuj1- and TH-positive sells in 150- and 300-nM-BIO-treated groups was significantly increased compared to that of other groups (p ≤ 0.01). In addition, the expression of the ß-catenin marker was higher in these groups as compared with that of other groups. Overall, BIO through its effect on the Wnt-Frizzled signaling pathway can promote dopaminergic differentiation of RenVm cells in a dose-dependent manner.

17.
Avicenna J Med Biotechnol ; 10(2): 69-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849982

RESUMO

BACKGROUND: Multiple Sclerosis (MS) has been explained as an autoimmune mediated disorder in central nerve system. Since conventional therapies for MS are not able to stop or reverse the destruction of nerve tissue, stem cell-based therapy has been proposed for the treatment of MS. Astaxanthin (AST) is a red fat-soluble xanthophyll with neuroprotection activity. The aim of this study was evaluation of pre-inducer function of AST on differentiation of human Adipose-Derived Stem Cells (hADSCs) into oligodendrocyte precursor cells. METHODS: After stem cell isolation, culture and characterization by flow cytometry, hanging drop technique was done for embryoid body formation. In the following, hADSCs were differentiated into oligodendrocyte cells in the presence of AST at various concentrations (1, 5, and 10 ng/ml). Finally, immunocytochemistry and real-time PCR techniques were used for assessment of oligodendrocyte differentiation. RESULTS: Flow cytometry results indicated that hADSCs were CD44, CD49-positive, but were negative for CD14, CD45 markers. In addition, immunocytochemistry results revealed that, in AST treated groups, the mean percentage of Olig 2 and A2B5 positive cells increased especially in 5 ng/ml AST treated group compared to control group (p<0.001). Moreover, real-time PCR analysis confirmed the results of immunocytochemistry. CONCLUSION: Since hADSCs have the potential to differentiate into multi lineage cells and due to important functions of AST in regulating various cellular processes, it seems that AST can be used as a promoter for oligodendrocyte differentiation of hADSCs for being used in cell transplantation in multiple sclerosis.

18.
Cell J ; 20(1): 46-52, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29308618

RESUMO

OBJECTIVES: The presence of neurotrophic factors is critical for regeneration of neural lesions. Here, we transplanted combination of neurotrophic factor secreting cells (NTF-SCs) and human adipose derived stem cells (hADSCs) into a lysolecithin model of multiple sclerosis (MS) and determined the myelinization efficiency of these cells. MATERIALS AND METHODS: In this experimental study, 50 adult rats were randomly divided into five groups: control, lysolecithin, vehicle, hADSCs transplantation and NTF-SCs/ hADSCs co-transplantation group. Focal demyelization was induced by lysolecithin injection into the spinal cord. In order to assess motor functions, all rats were scored weekly with a standard experimental autoimmune encephalomyelitis scoring scale before and after cell transplantation. Four weeks after cell transplantation, the extent of demyelination and remyelination were examined with Luxol Fast Blue (LFB) staining. Also, immunofluorescence method was used for evaluation of oligodendrocyte differentiation markers including; myelin basic protein (MBP) and Olig2 in the lesion area. RESULTS: Histological study show somewhat remyelinzation in cell transplantation groups related to others. In addition, the immunofluorescence results indicated that the MBP and Olig2 positive labeled cells were significantly higher in co-cell transplantation group than hADSCs group (P<0.05). Also, outcome of motor functional test showed significant improvement function in cell transplantation groups, as compared to the others (P<0.01). CONCLUSIONS: Our results indicated that the remyelinization process in co-cell transplantation group was better than other groups. Thus, NTF-SCs/ hADSCs transplantation can be proper candidate for cell based therapy in neurodegenerative diseases, such as MS.

19.
Avicenna J Med Biotechnol ; 9(4): 176-180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29090066

RESUMO

BACKGROUND: Stem cell-based therapy is a novel strategy for the treatment of neurodegenerative diseases. The transplantation of fully differentiated cells instead of stem cells in order to decrease serious adverse complications of stem cell therapy is a new idea. In this study, the effect of lithium chloride on dopaminergic differentiation of human immortalized RenVm cells was investigated in order to access a population of fully differentiated cells for transplantation in Parkinson disease. METHODS: The immortalized RenVm cells were induced to dopaminergic differentiation using a neurobasal medium supplemented with N2 and different concentrations (1, 3, 6 mM) of Lithium Chloride (LiCl) for 4, 8 and 12 days. The efficiency of dopaminergic differentiation was evaluated using immunocytochemistry and western blot techniques for tyrosine hydroxylase and ß-catenin marker expression. RESULTS: Our results indicated that LiCl can promote dopaminergic differentiation of RenVm cells in a dose-dependent manner. CONCLUSION: It can be concluded that LiCl is able to facilitate dopaminergic differentiation of cultured cells by affecting Wnt-frizzled signaling pathway.

20.
Iran J Basic Med Sci ; 20(4): 392-398, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28804608

RESUMO

OBJECTIVES: Neurotrophic factors secreting cells (NTS-SCs) may be a superior cell source for cell-based therapy in neurodegenerative diseases. NTS-SCs are able to secrete some neurotrophic Such as nerve growth factor and glia-derived neurotrophic factor. Our primary aim was to assess transplantation of neurotrophic factor secreting cells derived from human adipose-derived stem cells (hADSCs) into the damaged spinal cord rats and determine the potential of these cells in remyelination. MATERIALS AND METHODS: To this end, 40 adult male Wistar rats were categorized into four groups including; control, lysolecithin (Lysophosphatidylcholines or LPC), vehicle, and NTS-SCs transplan-tation. Local demyelination was induced using LPC injection into the lateral column of spinal cord. Seven days after the lysolecithin lesion, the cells transplantation was performed. The ultrastructure of myelinated fibers was examined with a transmission electron microscope to determine the extent of myelin destruction and remyelinization 4 weeks post cell transplantation. Moreover, the presence of oligodendrocyte in the lesion of spinal cord was assessed by immunohistochemistry procedure. RESULTS: The results of current study indicated that in NTF-SCs transplantation group, the remyelination process and the mean of myelin sheath thickness as well as axonal diameters were significantly higher than other groups (P<0.001). Furthermore, immunohistochemistry analysis revealed that in NTF-SCs transplantation group more than 10 percent of transplanted cells were positive for specific markers of oligodendrocyte cells. CONCLUSION: NTF-SCs transplantation represents a valuable option for cell-based therapy in the nervous tissue damages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA