Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Amino Acids ; 55(8): 955-967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314517

RESUMO

Post-wound infections have remained a serious threat to society and healthcare worldwide. Attempts are still being made to develop an ideal antibacterial wound dressing with high wound-healing potential and strong antibacterial activity against extensively drug-resistant bacteria (XDR). In this study, a biological-based sponge was made from decellularized human placenta (DPS) and then loaded with different concentrations (0, 16 µg/mL, 32 µg/mL, 64 µg/mL) of an antimicrobial peptide (AMP, CM11) to optimize an ideal antibacterial wound dressing. The decellularization of DPS was confirmed by histological evaluations and DNA content assay. The DPS loaded with different contents of antimicrobial peptides (AMPs) showed uniform morphology under a scanning electron microscope (SEM) and cytobiocompatibility for human adipose tissue-derived mesenchymal stem cells. Antibacterial assays indicated that the DPS/AMPs had antibacterial behavior against both standard strain and XDR Acinetobacter baumannii in a dose-dependent manner, as DPS loaded with 64 µg/mL showed the highest bacterial growth inhibition zone and elimination of bacteria under SEM than DPS alone and DPS loaded with 16 µg/mL and 32 µg/mL AMP concentrations. The subcutaneous implantation of all constructs in the animal model demonstrated no sign of acute immune system reaction and graft rejection, indicating in vivo biocompatibility of the scaffolds. Our findings suggest the DPS loaded with 64 µg/mL as an excellent antibacterial skin substitute, and now promises to proceed with pre-clinical and clinical investigations.


Assuntos
Peptídeos Antimicrobianos , Pele Artificial , Gravidez , Animais , Feminino , Humanos , Placenta , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Bactérias
2.
Mater Today Bio ; 20: 100666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273796

RESUMO

Extracellular matrix (ECM)-based bioinks has attracted much attention in recent years for 3D printing of native-like tissue constructs. Due to organ unavailability, human placental ECM can be an alternative source for the construction of 3D print composite scaffolds for the treatment of deep wounds. In this study, we use different concentrations (1.5%, 3% and 5%w/v) of ECM derived from the placenta, sodium-alginate and gelatin to prepare a printable bioink biomimicking natural skin. The printed hydrogels' morphology, physical structure, mechanical behavior, biocompatibility, and angiogenic property are investigated. The optimized ECM (5%w/v) 3D printed scaffold is applied on full-thickness wounds created in a mouse model. Due to their unique native-like structure, the ECM-based scaffolds provide a non-cytotoxic microenvironment for cell adhesion, infiltration, angiogenesis, and proliferation. In contrast, they do not show any sign of immune response to the host. Notably, the biodegradation, swelling rate, mechanical property, cell adhesion and angiogenesis properties increase with the increase of ECM concentrations in the construct. The ECM 3D printed scaffold implanted into deep wounds increases granulation tissue formation, angiogenesis, and re-epithelialization due to the presence of ECM components in the construct, when compared with printed scaffold with no ECM and no treatment wound. Overall, our findings demonstrate that the 5% ECM 3D scaffold supports the best deep wound regeneration in vivo, produces a skin replacement with a cellular structure comparable to native skin.

3.
J Lasers Med Sci ; 13: e15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996481

RESUMO

Introduction: As adipose tissue-derived stem cells (ADSCs) can divide rapidly and be prepared non-invasively, they have extensively been used in regenerative medicine. On the other hand, a new method of therapy, known as photobiomodulation (PHT), has been used to treat many diseases, such as inflammatory conditions, wound healing and pain. Besides, exposure to chemical substances such as bisphenol A (BPA), at low levels, can lead to autophagy. This study investigated the effects of BPA and PHT on the expression of autophagy-related genes, including LC3, NRF2, P62, in rat ADSCs as a model. Methods: ADSCs isolation and purification were confirmed by immunocytochemistry (ICC). The cells were then treated with different concentrations of BPA and also subjected to PHT. Reverse transcription polymerase chain reaction (RT-PCR) was used for the evaluation of LC3, NRF2 and P62 gene expressions. Oil red O staining was used for adipogenic vacuole formation. Result: ICC showed that the isolated cells were CD 49-positive but CD 31 and CD 34-negative. The viability test indicated that the number of live cells after 24 hours in the BPA groups at concentrations of 0, 1, 50, 100 and 200 µM was 100%, 93%, 81%, 72%, and 43% respectively. The difference in cell viability between groups 50, 100 and 200 µM was significant as compared with the control groups (P < 0.05). Moreover, in the group with 1 µM concentration of BPA, the expressions of LC3, NRF2 and P62 genes were upregulated. However, in the treatment group at the concentration of 200 µM of BPA, the LC3 gene was expressed, but NRF2 and P62 genes were downregulated. Conclusion: BPA and PHT induce autophagy and adiposeness in ADSCs in a dose-dependent manner.

4.
Folia Med (Plovdiv) ; 64(1): 75-83, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35851886

RESUMO

INTRODUCTION: It is well documented that some forced exercises can have bad effects on the genital system. Melatonin is a potent antioxidant that is effective in reducing the physical stress.


Assuntos
Melatonina , Condicionamento Físico Animal , Animais , Antioxidantes/farmacologia , Masculino , Melatonina/farmacologia , Ratos , Espermatogênese , Testículo
5.
Basic Clin Neurosci ; 13(5): 625-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313021

RESUMO

Introduction: The induction of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) toward dopaminergic neurons is a major challenge in tissue engineering and experimental and clinical treatments of various neurodegenerative diseases, including Parkinson disease. This study aims to differentiate HUC-MSCs into dopaminergic neuron-like cells. Methods: Following the isolation and characterization of HUC-MSCs, they were transferred to Matrigel-coated plates and incubated with a cocktail of dopaminergic neuronal differentiation factors. The capacity of differentiation into dopaminergic neuron-like cells in 2-dimensional culture and on Matrigel was assessed by real-time polymerase chain reaction, immunocytochemistry, and high-performance liquid chromatography. Results: Our results showed that dopaminergic neuronal markers' transcript and protein levels were significantly increased on the Matrigel differentiated cells compared to 2D culture plates. Conclusion: Overall, the results of this study suggest that HUC-MSCs can successfully differentiate toward dopaminergic neuron-like cells on Matrigel, having great potential for the treatment of dopaminergic neuron-related diseases.

6.
Neurosci Lett ; 760: 136070, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34147538

RESUMO

BACKGROUND: Therapy based stem cells have offered a novel therapeutic approach for the improvement of neurodegenerative diseases, specially Parkinson. Hence, developing a well-established culture model with appropriate stem cells is extremely crucial in regenerative engineering to provide efficient targeted cells. Human adult mesenchymal stem cells derived from adipose tissue (hADSCs) have emerged as a promising source of stem cells due to their unique potentials of self-renewal and differentiation into other stem cells. The purpose of this study was to investigate the differentiation capacity of hADSCs into dopaminergic and neuron-like cells in the 3D culture plate (Matrigel). METHODS AND MATERIALS: hADSCs were obtained from adipose tissues of patients and then characterized morphologically with flowcytometry. Isolated cells were harvested to perform differentiation on Matrigel and tissue culture plate (TCP) supplemented with induction factors. The survival rate of cells during neural induction was monitored by MTT. The expression of specific cell markers was analyzed by QRT-PCR and immunocytochemistry on days 2, 8 and 14. The level of released dopamine was measured using HPLC technique. RESULTS: Matrigel had a positive effect on maintaining cell growth compared to those on TCP. Moreover, the number of TH and MAPII positive cells is substantially higher in Matrigel than in TCP. Sox2 and Nestin had a prominent expression in hADSCs within the first days of differentiation. The gene expression of neural markers such as TH, Nurr1, LMX1A and DAT was detected and increased after day 8. Moreover, the dopamine released in the cell harvested on Matrigel was greater than those seeded on TCP. CONCLUSIONS: Overall, hADSCs could generate dopaminergic cells, which suggest its strong capability to serve as a tool for Parkinson disease model in the regenerative medicine.


Assuntos
Colágeno , Neurônios Dopaminérgicos/metabolismo , Laminina , Células-Tronco Mesenquimais/fisiologia , Cultura Primária de Células/métodos , Proteoglicanas , Tecido Adiposo/citologia , Adulto , Diferenciação Celular , Separação Celular , Células Cultivadas , Dopamina/metabolismo , Combinação de Medicamentos , Humanos , Pessoa de Meia-Idade
7.
Mater Sci Eng C Mater Biol Appl ; 121: 111814, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579458

RESUMO

Decellularization, preservation protocol and storage time influence the biomechanical and biological properties of allografts and xenografts. Here, we examined the consequences of storage time on the antibacterial, angiogenic and biocompatibility properties of the decellularized placental sponge (DPS) in vitro and in vivo. The DPS samples were preserved for one, three and six months at -20 °C. The decellularized scaffolds showed uniform morphology with interconnected pores compared with not decellularized sponges. Storage time did not interfere with collagen and vascular endothelial growth factor contents, and cytobiocompatibility for Hu02 fibroblast cells. Chorioallantoic membrane assay and subcutaneous implantation indicated a decreased new vessel formation and neovascularization in six months DPS sample compared with other experimental groups. The number of CD4+ and CD68+ cells infiltrated into the six months DPS on the implanted site showed a significant increase compared with one and three months sponges. The antibacterial activities and angiogenic properties of the DPS decreased over storage time. Three months preservation at -20 °C is suggested as the optimal storage period to retain its antibacterial activity and high stimulation of new vessel formation. This storage protocol could be considered for preservation of similar decellularized placenta-derived products with the aim of retaining their biological properties.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Feminino , Humanos , Placenta , Gravidez , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular
8.
ACS Biomater Sci Eng ; 6(10): 5823-5832, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320586

RESUMO

Engineering of 3D substrates with maximum similarity to seminiferous tubules would help to produce functional sperm cells in vitro from stem cells. Here, we present a 3D electrospun gelatin (EG) substrate seeded with Sertoli cells and determine its potential for guided differentiation of embryonic stem cells (ESCs) toward germline cells. The EG was fabricated by electrospinning, and its morphology under SEM, as well as cytobiocompatibility for Sertoli cells and ESCs, was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and cell attachment assay. Embryoid bodies (EBs) were formed from ESCs and co-cultured with Sertoli cells, induced with BMP4 for 3 and 7 consecutive days to induce the differentiation of EBs toward germline cells. The differentiation was investigated by immunocytochemistry (ICC), flow cytometry, and RT-PCR in four experimental groups of EBs (EBs cultured in gelatin-coated cell culture plates); Scaffold/EB (EBs cultured on EG); ESCs/Ser (EBs and Sertoli cells co-cultured on gelatin-coated cell culture plates without EG); and Scaffold/EB/Ser (EBs and Sertoli cells co-cultured on EG). All experimental groups exhibited a significantly increased MVH (germline-specific marker) and decreased c-KIT (stemness marker) expression when compared with the EB group. ICC and flow cytometry revealed that Scaffold/EB/Ser had the highest level of MVH and the lowest c-KIT expression at both 3 and 7 days postdifferentiation compared with other groups. RT-PCR results showed a significant increase in the germline marker (Dazl) and a significant decrease in the ESC stemness marker (Nanog) in Scaffold/EB compared to the EB group. The germline markers Gcna, Stella, Mvh, Stra8, Piwil2, and Dazl were significantly increased in Scaffold/EB/Ser compared to the Scaffold/EB group. Our findings revealed that the EG scaffold can provide an excellent substrate biomimicking the micro/nanostructure of native seminiferous tubules and a platform for Sertoli cell-EB communication required for growth and differentiation of ESCs into germline cells.


Assuntos
Células-Tronco Embrionárias , Gelatina , Células Cultivadas , Técnicas de Cocultura , Masculino , Espermatozoides
9.
Iran J Basic Med Sci ; 23(4): 431-438, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32489557

RESUMO

OBJECTIVES: Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim of this study was to compare the efficiency of two-dimensional with a three-dimensional culture system in their ability to generate functional motor neuron-like cells from adipose-derived stem cells. MATERIALS AND METHODS: We compared motor neuron-like cells derived from rat adipose tissue in differentiation, adhesion, proliferation, and functional properties on two-dimensional with three-dimensional culture systems. Neural differentiation was analyzed by immunocytochemistry for immature (Islet1) and mature (HB9, ChAT, and synaptophysin) motor neuron markers. RESULTS: Our results indicated that the three-dimensional environment exhibited an increase in the number of Islet1. In contrast, two-dimensional culture system resulted in more homeobox gene (HB9), Choline Acetyltransferase (ChAT), and synaptophysin positive cells. The results of this investigation showed that proliferation and adhesion of motor neuron-like cells significantly increased in three-dimensional compared with two-dimensional environments. CONCLUSION: The findings of this study suggested that three-dimension may create a proliferative niche for motor neuron-like cells. Overall, this study strengthens the idea that three-dimensional culture may mimic neural stem cell environment for neural tissue regeneration.

10.
J Chem Neuroanat ; 106: 101790, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278022

RESUMO

The differentiation of cultured Bone marrow stromal cells (BMSC) on silk scaffold into mature oligodendrocyte was done in the presence of cerebrospinal fluid (CSF). BMSC were isolated from Sprague-Dawley rats and were seeded on silk scaffold. The seeded cells were cultured in DMEM/F12 medium supplemented with CFS, basic fibroblast growth factor (bFGF), Retinoic acid (RA) and Epidermal growth factor (EGF). The glial differentiation was investigated using Real time-PCR and immunofluorescence techniques for specific glial markers: Oligo 2, NG2, PLP and MBP. Our dates showed that the differentiated cells expressed specific glial markers: Oligo 2, NG2, PLP and MBP. The specific mature oligodendrocyte genes were up regulated in cultured cells on silk scaffold in the presence of CSF. It is concluded that CSF leads to improve glial differentiation of seeded BMSC on silk scaffold using preparation of appropriate niche. This culture condition may be served as an efficient differentiation induction protocol for glial phenotype, with the perspective of therapeutic application in neuroregenerative medicine.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Líquido Cefalorraquidiano , Células-Tronco Mesenquimais/citologia , Oligodendroglia/citologia , Animais , Meios de Cultura , Ratos , Ratos Sprague-Dawley , Seda
11.
Basic Clin Neurosci ; 11(4): 457-464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613883

RESUMO

INTRODUCTION: The administration of 3,4-methylenedioxymethamphetamine (MDMA) or ecstasy causes memory impairment, whereas neurogenesis improves memory and learning. Hence, this study evaluated the effects of MDMA on neurogenesis in the hippocampus of male rats. METHODS: Adult male Wistar rats received Intraperitoneal (IP) injections of MDMA (10 mg/ kg). We assessed nestin, sex-determining region Y-box 2 (Sox2), and NeuroD expressions according to the immunohistochemistry analyses. RESULTS: MDMA reduced the expressions of nestin, Sox2, and NeuroD compared with the control groups. The reduction in NeuroD expression was age-related. CONCLUSION: MDMA possibly has negative effects on neurogenesis, which specifically results from impaired survival of newborn cells.

12.
Environ Sci Pollut Res Int ; 26(25): 26170-26183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31280441

RESUMO

2,4-Dicholorophenoxy acetic acid (2,4-D) is a worldwide used hormone herbicide. Human dental pulp stem cells (hDPSCs) as a potential source of mesenchymal stem cells provide a confident model system for the assessments of chemicals in vitro. The main objective of this study was to examine the biological effects and damages attributed to 2,4-D on hDPSCs. hDPSCs were isolated from third molar pulp tissues and their mesenchymal identity were evaluated. Then, hDPSCs were treated with increasing concentrations of 2,4-D (0.1 µM-10 mM). Cell viability assay and cumulative cell counting were carried out to address 2,4-D effects on biological parameters of hDPSCs. Cell cycle distribution, ROS level and ALP activity were measured before and after treatment. AO/EB staining and caspase 3/7 activity were investigated to detect the possible mechanisms of cell death. Flow-cytometric immunophenotyping and differentiation data confirmed the mesenchymal identity of cultivated hDPSCs. 2,4-D treatment caused a hormetic response in the viability and growth rate of hDPSCs. G0/G1 cell cycle arrest, enhanced ROS level, and reduced ALP activity were detected in hDPSCs treated with EC50 dose of 2,4-D. AO/EB staining showed a higher percentage of alive cells in lower concentrations of the herbicide. The increment in 2,4-D dose and the number of early and late apoptotic cells were increased. DAPI staining and caspase 3/7 assay validated the induction of apoptosis. 2,4-D concentrations up to 100 µM did not affect hDPSCs viability and proliferation. The intense cellular oxidative stress and apoptosis were observed at higher concentration.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/fisiologia , Células Epiteliais/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ácido 2,4-Diclorofenoxiacético/química , Apoptose , Ciclo Celular , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais , Células-Tronco
13.
Biotechnol Lett ; 41(6-7): 873-887, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073804

RESUMO

OBJECTIVE: Human dental pulp-derived stem cells (hDPSCs) are becoming an attractive source for cell-based neurorestorative therapies. As such, it is important to understand the molecular mechanisms that regulate the differentiation of hDPSCs toward the neuronal fate. Notch signaling plays key roles in neural stem/progenitor cells (NS/PCs) maintenance and prevention of their differentiation. The aim of this study was to address the effects of Notch signaling inhibition on neurosphere formation of hDPSCs and neuronal differentiation of hDPSCs-neurospheres. RESULTS: hDPSCs were isolated from third molar teeth. The cultivated hDPSCs highly expressed CD90 and CD44 and minimally presented CD34 and CD45 surface markers. The osteo/adipogenic differentiation of hDPSCs was documented. hDPSCs were cultured in neural induction medium and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-Sphenylglycine t-butyl ester (DAPT) was applied to impede Notch signaling during transformation into spheres or on the formed neurospheres. Our results showed that the size and number of neurospheres decreased and the expression profile of nestin, sox1 and pax6 genes reduced provided DAPT. Treatment of the formed neurospheres with DAPT resulted in the cleaved Notch1 reduction, G0/G1 arrest and a decline in L-lactate production. DAPT significantly reduced hes1 and hey1 genes, while ascl1 and neurogenin2 expressions augmented. The number of MAP2 positive cells improved in the DAPT-treated group. CONCLUSIONS: Our findings demonstrated the Notch activity in hDPSCs-neurospheres. DAPT treatment positively regulated proneural genes expression and increased neuronal-like differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Células Cultivadas , Polpa Dentária , Expressão Gênica , Humanos
14.
J Cell Biochem ; 120(8): 12508-12518, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977186

RESUMO

In this study, we present an electrospun gelatin (EG) scaffold to mimic the extracellular matrix of the testis. The EG scaffold was synthesized by electrospinning and crosslinked with glutaraldehyde vapor to decrease its water solubility and degradation rate. The scanning electron microscope micrographs showed the homogenous morphology of randomly aligned gelatin fibers. The average diameter of gelatin fibers before and after crosslinking was approximately 180 and 220 nm, respectively. Modulus, tensile strength, and elongation at break values were as 161.8 ± 24.4 MPa, 4.21 ± 0.54 MPa, and 7.06 ± 2.12 MPa, respectively. The crosslinked EG showed 75.2% ± 4.5% weight loss after 14 days with no changes in the pH value of degradation solution. Cytobiocompatibility of the EG for sertoli cells and embryonic stem cells (ESCs) was determined in vitro. Sertoli cells were isolated from mouse testis and characterized by immunostaining and flow cytometry. The effects of EG on proliferation and attachment of both sertoli cells and ESCs were examined. The EG scaffolds exhibited no cytotoxicity for sertoli and ESCs. Both sertoli and ESCs were well attached and grown on EG. Coculture of sertoli and ESCs on EG showed better ESCs adhesion compared with ESCs alone. Our findings indicate the potential of EG as a substrate for proliferation, adhesion, and coculture of sertoli and ESCs and may be considered as a promising engineered microenvironment for in vitro coculture system with the aim of guiding stem cells differentiation toward sperm-producing cells.


Assuntos
Técnicas de Cocultura/métodos , Células-Tronco Embrionárias/fisiologia , Gelatina , Células de Sertoli/fisiologia , Alicerces Teciduais , Animais , Proliferação de Células , Matriz Extracelular , Masculino , Camundongos , Testículo
15.
Cell J ; 21(2): 186-193, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30825292

RESUMO

OBJECTIVE: Spermatogonial stem cells (SSCs) provide the cellular basis for sperm production transforming the male's genetic information to the next generation. We aimed to examine the effect of different feeder layer on proliferation of SSCs. MATERIALS AND METHODS: In this experimental study, we compared the in vitro effects of the co-culture of mouse SSCs with mouse embryonic fibroblasts (MEFs), sandos inbred mice (SIM) embryo-derived thioguanine- and ouabainresistant (STO) feeders, and neonate and adult testicular stroma cell (TSC) feeders on the efficiency of mouse SSC proliferation and colony formation. Cells were cultivated on top of MEFs, STO, and neonate and adult TSCs feeder layers for 30 days. The number and diameter of colonies and also the number of cells were evaluated during day 7, 15, 25, and 30 of culture. The mRNA expression of germ cells and somatic cells were analyzed. RESULTS: In our study, we observed a significant difference in the proliferation rates and colony size of SSCs among the groups, especially for MEFs (P<0.05). SSCs can proliferate on MEFS, but not on STO, neonate or adult TSCs. Using immunocytochemistry by KI67 the proliferative activities of SSC colonies on MEFs were confirmed. The results of Fluidigm real-time polymerase chain reaction (RT-PCR) showed a high expression of the germ cell genes the promyelocytic leukemia zinc finger protein (PLZF), deleted in azoospermia-like (DAZL), octamer-binding transcription factor 4 (OCT4), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4 or VASA) in SSCs, and a low expression of these genes in the feeder layers. Furthermore, we observed a higher expression of vimentin and integrin-B1 in feeder layers than in SSCs (P<0.05). CONCLUSION: Based on the optimal effect of MEFs for better colonization of SSCs, these feeder cells seem to be appropriate candidates for SSC cultures prior to transplantation. Therefore, it is suggested using these feeder cells for SSC cultivation.

16.
Avicenna J Med Biotechnol ; 11(1): 28-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800240

RESUMO

BACKGROUND: The present study assessed the alteration of gene expression during transdifferentiation of Bone Marrow Stromal Cells (BMSCs) into oligodendrocyte in the presence of Cerebrospinal Fluid (CSF). METHODS: BMSCs were collected from female Sprague-Dawley rats and were cultured in DMEM/F12 medium supplemented with Retinoic Acid (RA), basic Fibroblast Growth Factor (bFGF), and Epidermal Growth Factor (EGF). CSF was added daily to the culture media. The oligoprogenitor and oligodendrocyte generation was assessed by immunocytochemistry for Oligo 2, A2B5, CNP and MBP markers. RESULTS: The mean percentages of immunopositive cells for Olig2 and A2B5 were 52.1±1.74 and 56.34±2.55%, respectively. The number of immunopositive cells for glial markers CNP and MBP were 48.8±3.12 and 40.5±8.92%, respectively. Alteration of gene expression of Oct4, Olig 2, PDGFR-α and PLP were examined by real time PCR during transdifferentiation of BMSC to oligodendrocyte. Immunocytochemical results indicate that oligoprogenitor cells were immunopositive for Oligo2 and A2B5 markers. Also, oligodendrocytes expressed the mature glial markers of CNP and MBP indicating successful differentiation. CONCLUSION: In conclusion, CSF promotes the transdifferentiation of BMSC into mature oligodendrocyte via providing an appropriate niche for glial maturation.

17.
J Chem Neuroanat ; 96: 126-133, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639339

RESUMO

The generation of dopaminergic neurons from stem cells is a potential therapeutic approach to treat neurodegenerative disorders, such as Parkinson's disease. The current study aims to investigate the potential of two different types of mesenchymal stem cells derived from human Wharton's jelly and nasal cavity for differentiation into dopaminergic neurons. The differentiation capacities of both cell types were evaluated using real-time PCR, immunocytochemistry, flow cytometry and HPLC. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are noted for their capability to differentiate into mesodermal and non-mesodermal cells, including neurons. However, it was demonstrated that having the same neuroectodermal origin as the nervous system, the olfactory ectomesenchymal stem cells (OE-MSCs) expressed the neural marker MAP2 as well as dopaminergic markers such as tyrosine hydroxylase (TH), dopamine transporter (DAT) and PITX3 to a greater extent than the WJ-MSCs both at the level of mRNA and protein. Furthermore, quantitative flow cytometric evaluation of these markers at 12 days post-induction supported the above-mentioned results. Finally, the assessment of the functionality of differentiated cells and their ability to synthesize dopamine measured by HPLC revealed that the OE-MSC-derived dopaminergic cells released almost the same amount of dopamine as that secreted by WJ-MSC-derived cells. Thus it showed the difference in their functionality to be negligible. Overall, it may be concluded that higher proliferation and differentiation capacity of OE-MSCs, along with their easier harvestability and autologous transplantability compared with WJ-MSCs, makes them a better cell source for stem cell therapy of neurodegenerative disorders which are caused by degeneration of dopaminergic neurons.


Assuntos
Diferenciação Celular/fisiologia , Neurônios Dopaminérgicos/citologia , Células-Tronco Mesenquimais/citologia , Mucosa Olfatória/citologia , Geleia de Wharton/citologia , Células Cultivadas , Humanos , Células-Tronco Neurais/citologia
18.
Basic Clin Neurosci ; 10(6): 609-617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32477478

RESUMO

INTRODUCTION: Cell therapy has been widely considered as a therapeutic approach for neurodegenerative diseases and nervous system damage. Cholinergic neurons as one of the most important neurons that play a significant role in controlling emotions, mobility, and autonomic systems. In this study, Human Dental Pulp Stem Cells (hDPSCs) were differentiated into the cholinergic neurons by ß-mercaptoethanol in the preinduction phase and also by the nerve growth factor (NGF) in the induction phase. METHODS: The hDPSCs were evaluated for CD73, CD31, CD34, and Oct-4. Concentration-time relationships for NGF were assessed by evaluating the viability rate of cells and the immune response to nestin, neurofilament 160, microtubule-associated protein-2, and choline acetyltransferase. RESULTS: The hDPSCs had a negative response to CD34 and CD31. The optimal dose for the NGF was 50 ng/mL seven days after the induction when the highest percentage of expressing markers for the Cholinergic neurons (ChAT) was detected. CONCLUSION: The results of this study provided a method for producing cholinergic neurons by hDPSCs, which can be used in cytotherapy for degenerative diseases of the nervous system and also spinal cord injury.

19.
Basic Clin Neurosci ; 8(5): 387-394, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167725

RESUMO

INTRODUCTION: The nerve fibers in central nervous system are surrounded by myelin sheet which is formed by oligodendrocytes. Cell therapy based on oligodendrocytes and their precursors transplantation can hold a promising alternative treatment for myelin sheet repair in demyelinating diseases. METHODS: Human Dental Pulp Stem Cells (hDPSCs) are noninvasive, autologous and easy available source with multipotency characteristics, so they are in focus of interest in regenerative medicine. In the present study, hDPSCs were differentiated into oligoprogenitor using glial induction media, containing Retinoic Acid (RA), basic Fibroblast Growth Factor (bFGF), Platelet-Derived Growth Factor (PDGF), N2 and B27. The differentiated Oligoprogenitor Cells (OPCs) were evaluated for nestin, Olig2, NG2 and O4 using immunocytochemistry. Also, the expression of nestin, Olig2 and PDGFR-α gens (neuroprogenitor and oligoprogenitor markers) were investigated via RT-PCR technique. RESULTS: The results indicate that glial differentiation medium induces the generation of oligoprogenitor cells as revealed via exhibition of specific glial markers, including Olig2, NG2 and O4. The expersion of nestin gene (neuroprogenitor marker) and Olig2 and PDGFR-α genes (oligoprogentor markers) were detected in treated hDPSCs at the end of the induction stage. CONCLUSION: hDPSCs can be induced to transdifferentiate into oligoprogenitor cells and respond to the routinely applied regents for glial differentiation of mesanchymal stem cells. These data suggest the hDPSCs as a valuable source for cell therapy in neurodegenerative diseases.

20.
Neurotox Res ; 32(4): 624-638, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699141

RESUMO

2,4-dicholorophenoxy acetic acid (2,4-D) is a worldwide-known hormone herbicide. However, there are increasing concerns about its exposure and risks of developing pathological conditions for the peripheral nervous system. The aim of this study was to investigate the mechanism(s) involved in the toxicity of 2,4-D on peripheral nerve's cellular components. The epi/perineural and Schwann cells and a total of three cell lines were treated with 2,4-D. The viability of cells at different doses of 2,4-D was measured by MTT assay. The cell cycle analyses, cumulative cell counting, fluorescent staining, antioxidant and caspase enzymes activity were examined on epi/perineural and Schwann cells. The epi/perineural cells were assessed as having biological macromolecular changes. Some tight junction-related genes and proteins were also tested on explants of 2,4-D treated epi/perineural tissue. The viability of 2,4-D treated cells was reduced in a dose-dependent manner. Reduced growth rate and G1 cell cycle arrest were verified in 2,4-D treated epi/perineural and Schwann cells. The use of staining methods (acridine orange/ethidium bromide and DAPI) and caspase 3/7 activity assay along with malondialdehyde, glutathione peroxidase, and superoxide dismutase activity assays indicated the apoptotic and oxidant effects of 2,4-D on epi/perineural and Schwann cells. Data obtained from FTIR revealed changes in epi/perineural proteins and cell membrane lipids. Additionally, claudin-1, occludin, and ZO-1 gene/protein expression profiles were significantly reduced in 2,4-D-treated epi/perineural pieces. Our data indicated that oxidative stress, apoptosis of epi/perineural and Schwann cell and impaired blood-nerve barrier may have contributed to nerve damage following 2,4-D exposure.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células de Schwann/citologia , Animais , Glutationa Peroxidase/metabolismo , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA