Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
IUBMB Life ; 64(8): 676-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22715033

RESUMO

The role of NO and cGMP signaling in tumor biology has been extensively studied during the past three decades. However, whether the pathway is beneficial or detrimental in cancer is still open to question. We suggest several reasons for this ambiguity: first, although NO participates in normal signaling (e.g., vasodilation and neurotransmission), NO is also a cytotoxic or apoptotic molecule when produced at high concentrations by inducible nitric-oxide synthase (iNOS or NOS-2). In addition, the cGMP-dependent (NO/sGC/cGMP pathway) and cGMP-independent (NO oxidative pathway) components may vary among different tissues and cell types. Furthermore, solid tumors contain two compartments: the parenchyma (neoplastic cells) and the stroma (nonmalignant supporting tissues including connective tissue, blood vessels, and inflammatory cells) with different NO biology. Thus, the NO/sGC/cGMP signaling molecules in tumors as well as the surrounding tissue must be further characterized before targeting this signaling pathway for tumor therapy. In this review, we focus on the NOS-2 expression in tumor and surrounding cells and summarized research outcome in terms of cancer therapy. We propose that a normal function of the sGC-cGMP signaling axis may be important for the prevention and/or treatment of malignant tumors. Inhibiting NOS-2 overexpression and the tumor inflammatory microenvironment, combined with normalization of the sGC/cGMP signaling may be a favorable alternative to chemotherapy and radiotherapy for malignant tumors.


Assuntos
GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Neoplasias/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , GMP Cíclico/uso terapêutico , Guanilato Ciclase/uso terapêutico , Humanos , Macrófagos/metabolismo , Camundongos , Neoplasias/enzimologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/uso terapêutico , Transdução de Sinais , Guanilil Ciclase Solúvel , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
2.
Am J Physiol Cell Physiol ; 300(5): C998-C1012, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21289290

RESUMO

In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/fisiologia , Calmodulina/fisiologia , Feminino , Masculino , Camundongos , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Proteínas S100/fisiologia , Retículo Sarcoplasmático/fisiologia
3.
Neuromuscul Disord ; 20(3): 166-73, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20080402

RESUMO

The skeletal muscle ryanodine receptor plays a crucial role in excitation-contraction (EC) coupling and is implicated in various congenital myopathies. The periodic paralyses are a heterogeneous, dominantly inherited group of conditions mainly associated with mutations in the SCN4A and the CACNA1S genes. The interaction between RyR1 and DHPR proteins underlies depolarization-induced Ca(2+) release during EC coupling in skeletal muscle. We report a 35-year-old woman presenting with signs and symptoms of a congenital myopathy at birth and repeated episodes of generalized, atypical normokalaemic paralysis in her late teens. Genetic studies of this patient revealed three heterozygous RYR1 substitutions (p.Arg2241X, p.Asp708Asn and p.Arg2939Lys) associated with marked reduction of the RyR1 protein and abnormal DHPR distribution. We conclude that RYR1 mutations may give rise to both myopathies and atypical periodic paralysis, and RYR1 mutations may underlie other unresolved cases of periodic paralysis with unusual features.


Assuntos
Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adulto , Arginina/genética , Cafeína/farmacologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Transformada , Análise Mutacional de DNA/métodos , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Saúde da Família , Feminino , Humanos , Lisina/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Doenças Musculares/classificação , Canal de Sódio Disparado por Voltagem NAV1.4 , Técnicas de Patch-Clamp , Inibidores de Fosfodiesterase/farmacologia , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Sódio/genética , Transfecção/métodos , Trítio/metabolismo
4.
Cell Calcium ; 45(2): 192-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027160

RESUMO

Ryanodine receptors plays a crucial role in skeletal muscle excitation-contraction coupling by releasing calcium ions required for muscle contraction from the sarcoplasmic reticulum. At least three phenotypes associated with more than 100 RYR1 mutations have been identified; in order to elucidate possible pathophysiological mechanisms of RYR1 mutations linked to neuromuscular disorders, it is essential to define the mutation class by studying the functional properties of channels harbouring clinically relevant amino acid substitutions. In the present report we investigated the functional effects of the c.7304G>T RYR1 substitution (p.Arg2435Leu) found in a patient affected by central core disease. Both parents were heterozygous for the substitution while the proband was homozygous. We characterized Ca(2+) homeostasis in myoD transduced myotubes from controls, the heterozygous parents and the homozygous proband expressing the endogenous mutation. We also expressed the recombinant mutant channels in heterologous cells and characterized their [(3)H]ryanodine binding and single channel properties. Our results show that the p.Arg2435Leu substitution affects neither the resting [Ca(2+)], nor the sensitivity of the ryanodine receptor to pharmacological activators, but rather reduces the release of Ca(2+) from intracellular stores induced by pharmacological activators as well as by KCl via the voltage sensing dihydropyridine receptor.


Assuntos
Genes Recessivos , Ativação do Canal Iônico , Mutação/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Cafeína/farmacologia , Cálcio/farmacologia , Criança , Pré-Escolar , Feminino , Homeostase/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Mutantes/metabolismo , Coelhos , Rianodina/metabolismo
5.
Pediatr Res ; 63(1): 20-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18043510

RESUMO

Ambient oxygen concentration and vascular endothelial growth factor (VEGF)-A are vital in lung development. Since hypoxia stimulates VEGF-A production and hyperoxia reduces it, we hypothesized that VEGF-A down-regulation by exposure of airways to hyperoxia may result in abnormal lung development. An established model of in vitro rat lung development was used to examine the effects of hyperoxia on embryonic lung morphogenesis and VEGF-A expression. Under physiologic conditions, lung explant growth and branching is similar to that seen in vivo. However, in hyperoxia (50% O2) the number of terminal buds and branch length was significantly reduced after 4 d of culture. This effect correlated with a significant increase in cellular apoptosis and decrease in proliferation compared with culture under physiologic conditions. mRNA for Vegf164 and Vegf188 was reduced during hyperoxia and addition of VEGF165, but not VEGF121, to explants grown in 50% O2 resulted in partial reversal of the decrease in lung branching, correlating with a decrease in cell apoptosis. Thus, hyperoxia suppresses VEGF-A expression and inhibits airway growth and branching. The ability of exogenous VEGF165 to partially reverse apoptotic effects suggests this may be a potential approach for the prevention of hyperoxic injury.


Assuntos
Apoptose , Hiperóxia/metabolismo , Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Hiperóxia/embriologia , Hiperóxia/genética , Hiperóxia/patologia , Pulmão/embriologia , Pulmão/patologia , Morfogênese , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/genética
6.
J Biol Chem ; 280(16): 16208-18, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15687501

RESUMO

The detrimental effect of severe hypoxia (SH) on neurons can be mitigated by hypoxic preconditioning (HPC), but the molecular mechanisms involved remain unclear, and an understanding of these may provide novel solutions for hypoxic/ischemic disorders (e.g. stroke). Here, we show that the delta-opioid receptor (DOR), an oxygen-sensitive membrane protein, mediates the HPC protection through specific signaling pathways. Although SH caused a decrease in DOR expression and neuronal injury, HPC induced an increase in DOR mRNA and protein levels and reversed the reduction in levels of the endogenous DOR peptide, leucine enkephalin, normally seen during SH, thus protecting the neurons from SH insult. The HPC-induced protection could be blocked by DOR antagonists. The DOR-mediated HPC protection depended on an increase in ERK and Bcl 2 activity, which counteracted the SH-induced increase in p38 MAPK activities and cytochrome c release. The cross-talk between ERK and p38 MAPKs displays a "yinyang" antagonism under the control of the DOR-G protein-protein kinase C pathway. Our findings demonstrate a novel mechanism of HPC neuroprotection (i.e. the intracellular up-regulation of DOR-regulated survival signals).


Assuntos
Neurônios/metabolismo , Oxigênio/metabolismo , Receptores Opioides delta/metabolismo , Animais , Células Cultivadas , Citocromos c/metabolismo , Encefalina Leucina/metabolismo , Hipóxia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Physiol ; 551(Pt 3): 741-50, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12843211

RESUMO

While large, myelinated dorsal root ganglion (DRG) neurons are capable of firing at high frequencies, small unmyelinated DRG neurons typically display much lower maximum firing frequencies. However, the molecular basis for this difference has not been delineated. Because the sodium currents in large DRG neurons exhibit rapid repriming (recovery from inactivation) kinetics and the sodium currents in small DRG neurons exhibit predominantly slow repriming kinetics, it has been proposed that differences in sodium channels might contribute to the determination of repetitive firing properties in DRG neurons. A recent study demonstrated that Nav1.7 expression is negatively correlated with conduction velocity and DRG cell size, while the Nav1.6 voltage-gated sodium channel has been implicated as the predominant isoform present at nodes of Ranvier of myelinated fibres. Therefore we characterized and compared the functional properties, including repriming, of recombinant Nav1.6 and Nav1.7 channels expressed in mouse DRG neurons. Both Nav1.6 and Nav1.7 channels generated fast-activating and fast-inactivating currents. However recovery from inactivation was significantly faster (approximately 5-fold at -70 mV) for Nav1.6 currents than for Nav1.7 currents. The recovery from inactivation of Nav1.6 channels was also much faster than that of native tetrodotoxin-sensitive sodium currents recorded from small spinal sensory neurons, but similar to that of tetrodotoxin-sensitive sodium currents recorded from large spinal sensory neurons. Development of closed-state inactivation was also much faster for Nav1.6 currents than for Nav1.7 currents. Our results indicate that the firing properties of DRG neurons can be tuned by regulating expression of different sodium channel isoforms that have distinct repriming and closed-state inactivation kinetics.


Assuntos
Gânglios Espinais/citologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios Aferentes/fisiologia , Canais de Sódio/fisiologia , Anestésicos Locais/farmacologia , Animais , Células Cultivadas , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Camundongos , Camundongos Mutantes , Canal de Sódio Disparado por Voltagem NAV1.6 , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Proteínas Recombinantes , Canais de Sódio/genética , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA