Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37766064

RESUMO

Infrared thermographs (IRTs) are commonly used during disease pandemics to screen individuals with elevated body temperature (EBT). To address the limited research on external factors affecting IRT accuracy, we conducted benchtop measurements and computer simulations with two IRTs, with or without an external temperature reference source (ETRS) for temperature compensation. The combination of an IRT and an ETRS forms a screening thermograph (ST). We investigated the effects of viewing angle (θ, 0-75°), ETRS set temperature (TETRS, 30-40 °C), ambient temperature (Tatm, 18-32 °C), relative humidity (RH, 15-80%), and working distance (d, 0.4-2.8 m). We discovered that STs exhibited higher accuracy compared to IRTs alone. Across the tested ranges of Tatm and RH, both IRTs exhibited absolute measurement errors of less than 0.97 °C, while both STs maintained absolute measurement errors of less than 0.12 °C. The optimal TETRS for EBT detection was 36-37 °C. When θ was below 30°, the two STs underestimated calibration source (CS) temperature (TCS) of less than 0.05 °C. The computer simulations showed absolute temperature differences of up to 0.28 °C and 0.04 °C between estimated and theoretical temperatures for IRTs and STs, respectively, considering d of 0.2-3.0 m, Tatm of 15-35 °C, and RH of 5-95%. The results highlight the importance of precise calibration and environmental control for reliable temperature readings and suggest proper ranges for these factors, aiming to enhance current standard documents and best practice guidelines. These insights enhance our understanding of IRT performance and their sensitivity to various factors, thereby facilitating the development of best practices for accurate EBT measurement.

2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009758

RESUMO

Infrared thermographs (IRTs) implemented according to standardized best practices have shown strong potential for detecting elevated body temperatures (EBT), which may be useful in clinical settings and during infectious disease epidemics. However, optimal IRT calibration methods have not been established and the clinical performance of these devices relative to the more common non-contact infrared thermometers (NCITs) remains unclear. In addition to confirming the findings of our preliminary analysis of clinical study results, the primary intent of this study was to compare methods for IRT calibration and identify best practices for assessing the performance of IRTs intended to detect EBT. A key secondary aim was to compare IRT clinical accuracy to that of NCITs. We performed a clinical thermographic imaging study of more than 1000 subjects, acquiring temperature data from several facial locations that, along with reference oral temperatures, were used to calibrate two IRT systems based on seven different regression methods. Oral temperatures imputed from facial data were used to evaluate IRT clinical accuracy based on metrics such as clinical bias (Δcb), repeatability, root-mean-square difference, and sensitivity/specificity. We proposed several calibration approaches designed to account for the non-uniform data density across the temperature range and a constant offset approach tended to show better ability to detect EBT. As in our prior study, inner canthi or full-face maximum temperatures provided the highest clinical accuracy. With an optimal calibration approach, these methods achieved a Δcb between ±0.03 °C with standard deviation (σΔcb) less than 0.3 °C, and sensitivity/specificity between 84% and 94%. Results of forehead-center measurements with NCITs or IRTs indicated reduced performance. An analysis of the complete clinical data set confirms the essential findings of our preliminary evaluation, with minor differences. Our findings provide novel insights into methods and metrics for the clinical accuracy assessment of IRTs. Furthermore, our results indicate that calibration approaches providing the highest clinical accuracy in the 37-38.5 °C range may be most effective for measuring EBT. While device performance depends on many factors, IRTs can provide superior performance to NCITs.


Assuntos
Temperatura Corporal , Termografia , Calibragem , Febre , Humanos , Raios Infravermelhos , Termômetros
3.
J Biomed Opt ; 25(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32921005

RESUMO

SIGNIFICANCE: Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance. AIM: Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location. APPROACH: We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects. RESULTS: Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening. CONCLUSION: Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.


Assuntos
Temperatura Corporal , Infecções por Coronavirus/diagnóstico , Face/fisiologia , Febre/diagnóstico , Pneumonia Viral/diagnóstico , Termografia/métodos , Adolescente , Adulto , Idoso , Área Sob a Curva , Betacoronavirus , COVID-19 , Feminino , Humanos , Raios Infravermelhos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Pandemias , Guias de Prática Clínica como Assunto , Curva ROC , Reprodutibilidade dos Testes , SARS-CoV-2 , Adulto Jovem
4.
Biomed Opt Express ; 10(8): 3731-3746, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452971

RESUMO

Cerebral oximetry based on near-infrared spectroscopy represents a unique noninvasive tool for real-time surgical monitoring, yet studies have shown a significant discrepancy in accuracy among commercial systems. Towards the establishment of a standardized method for performance testing, we have studied a solid phantom approach - based on a 3D-printed cerebrovascular module (CVM) incorporating an array of 148 cylindrical channels - that has several advantages over liquid phantoms. Development and characterization of a CVM prototype are described, including high-resolution imaging and spectrophotometry measurements. The CVM was filled with whole bovine blood tuned over an oxygen saturation range of 30-90% and molded-silicone layers simulating extracerebral tissues were used to evaluate penetration depth. Saturation measurement accuracy was assessed in two commercially-available clinical cerebral oximeters. For one oximeter, both neonatal and pediatric sensors showed a high degree of precision, whereas accuracy was strongly dependent on saturation level and extracerebral geometry. The second oximeter showed worse precision, yet greater robustness to variations in extracerebral layers. These results indicate that 3D-printed channel array phantoms represent a promising new approach for standardized testing of clinical oximeters.

5.
PLoS One ; 13(9): e0203302, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30231046

RESUMO

Infrared (IR) modalities represent the only currently viable mass fever screening approaches for outbreaks of infectious disease pandemics such as Ebola virus disease and severe acute respiratory syndrome. Non-contact IR thermometers (NCITs) and IR thermographs (IRTs) have been used for fever screening in public areas such as airports. While NCITs remain a more popular choice than IRTs, there has been increasing evidences in the literature that IRTs can provide great accuracy in estimating body temperature if qualified systems are used and appropriate procedures are consistently applied. In this study, we addressed the issue of IRT qualification by implementing and evaluating a battery of test methods for objective, quantitative assessment of IRT performance based on a recent international standard (IEC 80601-2-59). We tested two commercial IRTs to evaluate their stability and drift, image uniformity, minimum resolvable temperature difference, and radiometric temperature laboratory accuracy. Based on these tests, we illustrated how experimental and data processing procedures could affect results, and suggested methods for clarifying and optimizing test methods. Overall, the insights into thermograph standardization and acquisition methods provided by this study may improve the utility of IR thermography and aid in comparing IRT performance, thus improving the potential for producing high quality disease pandemic countermeasures.


Assuntos
Febre/diagnóstico , Termografia/métodos , Termografia/normas , Aeroportos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Humanos , Raios Infravermelhos , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Programas de Rastreamento/estatística & dados numéricos , Guias de Prática Clínica como Assunto/normas , Termografia/estatística & dados numéricos , Termômetros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA