Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979364

RESUMO

Macroautophagy/autophagy, a crucial cellular process, is typically measured using fluorescence-based techniques, which can be costly, complex, and impractical for clinical settings. In this paper, we introduce a novel, cost-effective, non-fluorescent immunohistochemistry (IHC) method for evaluating autophagy flux. This technique, based on antigen-antibody reactions and chromogenic detection, provides clear, quantifiable results under standard light microscopy, eliminating the need for expensive equipment and specialized reagents. Our method simplifies technical requirements, making it accessible to routine clinical laboratories and research settings with limited resources. By comparing our approach with traditional fluorescence methods, we demonstrate its superior effectiveness, cost-efficiency, and applicability to patient samples. This innovative technique has the potential to significantly advance autophagy research and improve clinical diagnostics, offering a practical and robust tool for studying autophagy mechanisms in diseases such as cancer and neurodegenerative disorders. Our non-fluorescent IHC method represents a significant step forward in evaluating autophagy flux, making it more accessible and reliable, with the promise of enhancing our understanding and treatment of autophagy-related diseases.

2.
Cancers (Basel) ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893240

RESUMO

Gliomas are primary brain lesions involving cerebral structures without well-defined boundaries and constitute the most prevalent central nervous system (CNS) neoplasms. Among gliomas, glioblastoma (GB) is a glioma of the highest grade and is associated with a grim prognosis. We examined how clinical variables and molecular profiles may have affected overall survival (OS) over the past ten years. A retrospective study was conducted at Sina Hospital in Tehran, Iran and examined patients with confirmed glioma diagnoses between 2012 and 2020. We evaluated the correlation between OS in GB patients and sociodemographic as well as clinical factors and molecular profiling based on IDH1, O-6-Methylguanine-DNA Methyltransferase (MGMT), TERTp, and epidermal growth factor receptor (EGFR) amplification (EGFR-amp) status. Kaplan-Meier and multivariate Cox regression models were used to assess patient survival. A total of 178 patients were enrolled in the study. The median OS was 20 months, with a 2-year survival rate of 61.0%. Among the 127 patients with available IDH measurements, 100 (78.7%) exhibited mutated IDH1 (IDH1-mut) tumors. Of the 127 patients with assessed MGMT promoter methylation (MGMTp-met), 89 (70.1%) had MGMT methylated tumors. Mutant TERTp (TERTp-mut) was detected in 20 out of 127 cases (15.7%), while wildtype TERTp (wildtype TERTp-wt) was observed in 107 cases (84.3%). Analyses using multivariable models revealed that age at histological grade (p < 0.0001), adjuvant radiotherapy (p < 0.018), IDH1 status (p < 0.043), and TERT-p status (p < 0.014) were independently associated with OS. Our study demonstrates that patients with higher tumor histological grades who had received adjuvant radiotherapy exhibited IDH1-mut or presented with TERTp-wt experienced improved OS. Besides, an interesting finding showed an association between methylation of MGMTp and TERTp status with tumor location.

3.
Nanoscale ; 16(27): 12750-12792, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899396

RESUMO

Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.


Assuntos
Técnicas Biossensoriais , Biotina , Nanopartículas , Neoplasias , Humanos , Biotina/química , Neoplasias/diagnóstico , Técnicas Biossensoriais/métodos , Nanopartículas/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas , Avidina/química , Animais
5.
FEBS Open Bio ; 14(7): 1116-1132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769074

RESUMO

Alzheimer's disease (AD) is an increasingly important public health concern due to the increasing proportion of older individuals within the general population. The impairment of processes responsible for adequate brain energy supply primarily determines the early features of the aging process. Restricting brain energy supply results in brain hypometabolism prior to clinical symptoms and is anatomically and functionally associated with cognitive impairment. The present study investigated changes in metabolic profiles induced by intracerebroventricular-streptozotocin (ICV-STZ) in an AD-like animal model. To this end, male Wistar rats received a single injection of STZ (3 mg·kg-1) by ICV (2.5 µL into each ventricle for 5 min on each side). In the second week after receiving ICV-STZ, rats were tested for cognitive performance using the Morris Water Maze test and subsequently prepared for positron emission tomography (PET) to confirm AD-like symptoms. Tandem Mass Spectrometry (MS/MS) analysis was used to detect amino acid changes in cerebrospinal fluid (CFS) samples. Our metabolomics study revealed a reduction in the concentrations of various amino acids (alanine, arginine, aspartic acid, glutamic acid, glycine, isoleucine, methionine, phenylalanine, proline, serine, threonine, tryptophane, tyrosine, and valine) in CSF of ICV-STZ-treated animals as compared to controls rats. The results of the current study indicate amino acid levels could potentially be considered targets of nutritional and/or pharmacological interventions to interfere with AD progression.


Assuntos
Doença de Alzheimer , Aminoácidos , Modelos Animais de Doenças , Metabolômica , Ratos Wistar , Estreptozocina , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/líquido cefalorraquidiano , Masculino , Ratos , Metabolômica/métodos , Aminoácidos/metabolismo , Aminoácidos/líquido cefalorraquidiano , Biologia de Sistemas , Tomografia por Emissão de Pósitrons , Injeções Intraventriculares
6.
Expert Rev Proteomics ; 21(4): 125-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563427

RESUMO

INTRODUCTION: Gene identification for genetic diseases is critical for the development of new diagnostic approaches and personalized treatment options. Prioritization of gene translation is an important consideration in the molecular biology field, allowing researchers to focus on the most promising candidates for further investigation. AREAS COVERED: In this paper, we discussed different approaches to prioritize genes for translation, including the use of computational tools and machine learning algorithms, as well as experimental techniques such as knockdown and overexpression studies. We also explored the potential biases and limitations of these approaches and proposed strategies to improve the accuracy and reliability of gene prioritization methods. Although numerous computational methods have been developed for this purpose, there is a need for computational methods that incorporate tissue-specific information to enable more accurate prioritization of candidate genes. Such methods should provide tissue-specific predictions, insights into underlying disease mechanisms, and more accurate prioritization of genes. EXPERT OPINION: Using advanced computational tools and machine learning algorithms to prioritize genes, we can identify potential targets for therapeutic intervention of complex diseases. This represents an up-and-coming method for drug development and personalized medicine.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Humanos , Algoritmos , Biologia Computacional/métodos , Medicina de Precisão/métodos , Biossíntese de Proteínas/genética
7.
Methods Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38607594

RESUMO

Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer characterized by its aggressive nature and high mortality rate, primarily due to late-stage diagnosis and metastatic spread. Recent studies underscore the pivotal role of mitophagy, a selective form of autophagy targeting damaged or superfluous mitochondria, in cancer biology, including NSCLC. Mitophagy regulation may influence cancer cell survival, proliferation, and metastasis by modulating mitochondrial quality and cellular energy homeostasis. Herein, we present a comprehensive methodology developed in our laboratory for the evaluation of mitophagy in NSCLC tumor cells. Utilizing a combination of immunoblotting, immunocytochemistry, and fluorescent microscopy, we detail the steps to quantify early and late mitophagy markers and mitochondrial dynamics. Our findings highlight the potential of targeting mitophagy pathways as a novel therapeutic strategy in NSCLC, offering insights into the complex interplay between mitochondrial dysfunction and tumor progression. This study not only sheds light on the significance of mitophagy in NSCLC but also establishes a foundational approach for its investigation, paving way for future research in this critical area of cancer biology.

8.
Methods Mol Biol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38647864

RESUMO

Remodeling of the extracellular matrix (ECM) eventually causes the stiffening of tumors and changes to the microenvironment. The stiffening alters the biological processes in cancer cells due to altered signaling through cell surface receptors. Autophagy, a key catabolic process in normal and cancer cells, is thought to be involved in mechano-transduction and the level of autophagy is probably stiffness-dependent. Here, we provide a methodology to study the effect of matrix stiffness on autophagy in embryonal rhabdomyosarcoma cells. To mimic stiffness, we seeded cells on GelMA hydrogel matrices with defined stiffness and evaluated autophagy-related endpoints. We also evaluated autophagy-dependent pathways, apoptosis, and cell viability. Specifically, we utilized immunocytochemistry and confocal microscopy to track autophagosome formation through LC3 lipidation. This approach suggests that the use of GelMA hydrogels with defined stiffness represents a novel method to evaluate the role of autophagy in embryonal rhabdomyosarcoma and other cancer cells.

10.
Methods Mol Biol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38578576

RESUMO

Microbial dysbiosis is an important trigger in the development of oral diseases. Oral keratinocytes or gingival epithelial cells (GECs) offer protection against various microbial insults. Recent studies suggest that GECs expressed higher level of bitter taste receptor 14 (T2R14) compared to other taste receptors and toll-like receptors and act as innate immune sentinels. Macroautophagy or autophagy is a cellular conserved process involved in the regulation of host innate immune responses against microbial infection. Here, we describe a robust method for evaluation of T2R14-dependent autophagy flux in GECs. Autophagy flux was detected using Western blot analysis in GECs and further was confirmed using Acridine Orange-dependent flow cytometry analysis.

11.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534375

RESUMO

Macroautophagy (hereafter autophagy) is a lysosomal degradation pathway that functions in nutrient recycling and as a mechanism of innate immunity. Previously, we reported a novel host-bacteria interaction between cariogenic S. mutans and bitter taste receptor (T2R14) in gingival epithelial cells (GECs), leading to an innate immune response. Further, S. mutans might be using the host immune system to inhibit other Gram-positive bacteria, such as S. aureus. To determine whether these bacteria exploit the autophagic machinery of GEC, it is first necessary to evaluate the role of T2R14 in modulating autophagic flux. So far, the role of T2R14 in the regulation of autophagy is not well characterized. Therefore, in this study, for the first time, we report that T2R14 downregulates autophagy flux in GECs, and T2R14 knockout increases acidic vacuoles. However, the treatments of GEC WT with a T2R14 agonist and antagonist did not lead to a significant change in acidic vacuole formation. Transmission electron microscopy morphometric results also suggested an increased number of autophagic vesicles in T2R14-knockout GEC. Further, our results suggest that S. mutans competence stimulating peptide CSP-1 showed robust intracellular calcium release and this effect is both T2R14- and autophagy protein 7-dependent. In this study, we provide the first evidence that T2R14 modulates autophagy flux in GEC. The results of the current study could help in identifying the impact of T2R in regulation of the immuno-microenvironment of GEC and subsequently oral health.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Paladar/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Staphylococcus aureus , Autofagia , Células Epiteliais/metabolismo
12.
Methods Mol Biol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499918

RESUMO

Vernal keratoconjunctivitis (VKC) is a serious eye allergy characterized by poorly understood pathogenic mechanisms and a lack of effective treatments. Autophagy, a process involved in both triggering and suppressing immune and inflammatory responses, plays a role in VKC's pathophysiology. Understanding autophagy's involvement in VKC could lead to new treatment possibilities, such as utilizing specific topical substances to induce or inhibit autophagy and prevent severe complications of this eye condition. In our current protocol, we present a robust methodology established in our laboratory for studying autophagy in primary conjunctival fibroblasts. We assess autophagy through techniques like immunocytochemistry, immunoblotting, and qPCR.

13.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474036

RESUMO

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1 , Fatores de Transcrição Box Pareados/genética , Transição Epitelial-Mesenquimal , Rabdomiossarcoma/genética , Proteínas de Fusão Oncogênica/genética
14.
Methods Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441724

RESUMO

Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.

15.
Methods Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441721

RESUMO

Non-small cell lung cancer (NSCLC) is among the most malignant tumors with high propensity for metastasis and is the leading cause of cancer-related death globally. Most patients present with regional and distant metastasis, associated with poor prognosis. Lipids may play an essential role in either activating or inhibiting detachment-induced apoptosis (anoikis), where the latter is a crucial mechanism to prevent metastasis, and it may have a cross-talk with autophagy. Autophagy has been shown to be induced in various human cancer metastasis, modulating tumor cell motility and invasion, cancer cell differentiation, resistance to anoikis, and epithelial to mesenchymal transition. Hence, it may play a crucial role in the transition of benign to malignant phenotypes, the core of metastasis initiation. Here, we provide a method we have established in our laboratory for detecting lipids in attached and detached non-small lung cancer cells and show how to analyze lipidomics data to find its correlation with autophagy-related pathways.

16.
Cancer Lett ; 585: 216661, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38309613

RESUMO

Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Autofagia , Transição Epitelial-Mesenquimal , Anticorpos Monoclonais/farmacologia
17.
Semin Cancer Biol ; 99: 24-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309540

RESUMO

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.


Assuntos
Neoplasias , Obesidade , Humanos , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Resultado do Tratamento , Autofagia/fisiologia , Neoplasias/etiologia , Neoplasias/metabolismo
18.
Biochem Cell Biol ; 102(2): 127-134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988705

RESUMO

Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ceramidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166824, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37949196

RESUMO

Metastasis represents one of the most dangerous issue of cancer progression, characterized by intricate interactions between invading tumor cells, various proteins, and other cells on the way towards target sites. Tumor cells, while undergoing metastasis, engage in dynamic dialogues with stromal cells and undertake epithelial-mesenchymal transition (EMT) phenoconversion. To ensure survival, tumor cells employ several strategies such as restructuring their metabolic needs to adapt to the alterations of the microenvironmental resources via different mechanisms including macroautophagy (autophagy) and to circumvent anoikis-a form of cell death induced upon detachment from the extracellular matrix (ECM). This review focuses on the puzzling connections of autophagy and energetic metabolism within the context of cancer metastasis.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Proteínas , Autofagia
20.
Cancers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958442

RESUMO

Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA