Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 189(4): 150, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304680

RESUMO

This study investigated, for the first time, the antimicrobial properties of polyethylene glycol-functionalized poly(N-phenylglycine) nanoparticles (PNPG-PEG NPs). PNPG-PEG NPs exhibit high extinction coefficient in the near-infrared (NIR) region; they can convert light energy into heat energy with high thermal transformation efficiency. Additionally, they can generate cytotoxic reactive oxygen species (ROS) upon light irradiation. Also, PNPG-PEG NPs are not cytotoxic. All these properties make them appropriate for combined dual-modal photothermal and photodynamic therapies. The antibacterial activity of PNPG-PEG NPs was assessed using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) pathogenic strains. The results revealed that NIR light (810 nm) irradiation for 10 min could kill effectively the planktonic bacteria and destroy Escherichia coli and Staphylococcus aureus biofilms. The results demonstrated that PNPG-PEG NPs represent a very effective nanoplatform for killing of pathogenic bacteria.


Assuntos
Nanopartículas , Fotoquimioterapia , Antibacterianos/farmacologia , Escherichia coli , Glicina/análogos & derivados , Staphylococcus aureus
2.
Anal Methods ; 14(8): 813-819, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35138313

RESUMO

Herein, we present a facile and sensitive fluorescence resonance energy transfer (FRET) aptasensor for the detection of pathogenic bacteria, where antibiotic-functionalized cerium oxide nanoparticles were served as an energy donor and aptamer-modified gold nanoparticles (aptamer-AuNPs) were employed as an energy acceptor. To illustrate the feasibility of this strategy, Escherichia coli (E. coli) was examined. The strategy for the detection of E. coli bacteria as a target molecule is described using the FRET pair of azithromycin-functionalized CeO2 nanoparticles (Azm-CeO2NPs) and aptamer-AuNPs. The spectral overlap between these two nanoparticles and Azm and the aptamer binding on the surface of E. coli specifically provides the condition, which leads to the occurrence of the FRET phenomenon. In this way, a good linear correlation between the fluorescence intensity of Azm-CeO2NPs and E. coli concentration was obtained in the range of 10-1.5 × 105 cfu mL-1. The detection limit of the proposed method at a signal to noise ratio of 3 (3σ) was estimated to be 1.04 cfu mL-1. Further, the proposed method was applied to detect E. coli in real samples within 30 min, which indicates the applicability of the proposed method. This method could be used for other pathogenic bacterium recognition or synchronous detection by employing molecules that are particular to the desired bacteria.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Cério , Escherichia coli , Transferência Ressonante de Energia de Fluorescência/métodos , Ouro/química , Nanopartículas Metálicas/química , Leite/química , Soro do Leite
3.
Nanomaterials (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34578471

RESUMO

The synthesis of multifunctional photothermal nanoagents for antibiotic loading and release remains a challenging task in nanomedicine. Herein, we investigated a simple, low-cost strategy for the preparation of CuS-BSA nanoparticles (NPs) loaded with a natural enzyme, lysozyme, as an antibacterial drug model under physiological conditions. The successful development of CuS-BSA NPs was confirmed by various characterization tools such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lysozyme loading onto CuS-BSA NPs was evaluated by UV/vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), zeta potential, and dynamic light scattering measurements. The CuS-BSA/lysozyme nanocomposite was investigated as an effective means for bacterial elimination of B. subtilis (Gram-positive) and E. coli (Gram-negative), owing to the combined photothermal heating performance of CuS-BSA and lysozyme release under 980 nm (0.7 W cm-2) illumination, which enhances the antibiotic action of the enzyme. Besides the photothermal properties, CuS-BSA/lysozyme nanocomposite possesses photodynamic activity induced by NIR illumination, which further improves its bacterial killing efficiency. The biocompatibility of CuS-BSA and CuS-BSA/Lysozyme was elicited in vitro on HeLa and U-87 MG cancer cell lines, and immortalized human hepatocyte (IHH) cell line. Considering these advantages, CuS-BSA NPs can be used as a suitable drug carrier and hold promise to overcome the limitations of traditional antibiotic therapy.

4.
Talanta ; 226: 122082, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676645

RESUMO

This paper reports on enzyme-like catalytic properties of polyethylene glycol-functionalized poly(N-phenylglycine) (PNPG-PEG) nanoparticles, which have not been explored to date. The developed nanoparticles have the ability to display great inherent peroxidase-like activity at very low concentrations, and are able to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in presence of hydrogen peroxide (H2O2). The oxidized product of TMB has a deep blue color with a maximum absorbance at ~655 nm. The PNPG-PEG nanoparticles exhibit Km values of 0.2828 for TMB and 0.0799 for H2O2, indicating that TMB oxidation takes place at lower concentration of H2O2 in comparison to other nanozymes. Based on the known mechanism of H2O2 oxidation by hexavalent chromium [Cr(VI)] ions to generate hydroxyl radicals (•OH), these nanoparticles were successfully applied for the colorimetric sensing of Cr(VI) ions. The sensor achieved good performance for Cr(VI) sensing with detection limits of 0.012 µM (0.01-0.1 µM linear range) and 0.52 µM (0.05-12.5 µM linear range). The detection scheme was highly selective, and successfully applied for the detection of Cr(VI) in real water samples.


Assuntos
Colorimetria , Nanopartículas , Cromo , Glicina/análogos & derivados , Peróxido de Hidrogênio , Peroxidase , Peroxidases
5.
Methods Appl Fluoresc ; 7(1): 015005, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30524015

RESUMO

Cytochrome c (Cyt c), a heme protein, can be a potential biomarker for cell-apoptosis or even cancer diagnosis. In this work, a simple, rapid, sensitive and selective label-free assay for Cytochrome c (Cyt c) detection is introduced based on an interaction between nucleic acid aptamer biomolecules and surfaces of Carbon Dots (CDs). CDs are used as a fluorescent probes and Cyt c-aptamers as a sensing materials. Interactions of aptamers with CDs quench the fluorescent intensity of CDs. By addition of Cyt c biomolecule as an analyte to the solution and binding to the aptamers, CDs fluorescence turns on. Stronger binding affinity of the aptamers toward Cyt c than CDs, causes they leave the CDs surfaces and the fluorescence is recovered. The amount of recoveries corresponds linearly to the concentration of Cyt c and be used as the basis of detection. The method exhibited high sensitivity to Cyt c with a detection limit of 25.90 nM and a linear range from 40 nM to 240 nM.


Assuntos
Apoptose , Aptâmeros de Nucleotídeos/química , Biomarcadores/sangue , Citocromos c/sangue , Corantes Fluorescentes/química , Pontos Quânticos/química , Adsorção , Sequência de Bases , Bioensaio/métodos , Carbono/química , Fluorescência , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA