Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Graph Model ; 132: 108832, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39059055

RESUMO

Selecting an appropriate anode material (AM) has been considered to be a crucial initial step in advancing high-performance batteries. Within this piece of research, we examine the suitability of the BC6NA monolayer (referred to as BC6NAML) as an AM by first-principles calculations. The BC6NAML exhibits metallic behavior consistently, even with varying concentrations of Na atoms, making it an ideal choice for battery usages. Our findings revealed that the theoretical storage capacity for Na-adhered BC6NAML was 406.36 mAhg-1, surpassing graphite, TiO2, BC6NA, and numerous other 2D materials. The BC6NAML also demonstrates a diffusion barrier of 0.39 eV and favorable diffusivity of Na-ions. Although the open-circuit voltage (OCV) of BC6NAML was temperate and lower compared to the OCV of other AMs like TiO2, our results suggested that it is possible to utilize BC6NAML as one of the encouraging host materials for sodium-ion batteries (SIBs). Consequently, this investigation into the potential anodic application of BC6NAML proves valuable for future experimental studies into sodium storage for SIBs.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Sódio , Sódio/química , Íons/química
2.
Heliyon ; 10(12): e32837, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022059

RESUMO

This work aimed to produce silver nanoparticles (AgNPs) by efficient green synthesis techniques, namely rapid green synthesis and modified microwave-assisted green synthesis methods. The study used fish scale collagen (FsCol) as a stabilizer to assess its impact on the dimensions and configurations of AgNPs. Four samples were prepared with varying concentrations of FsCol. The synthesized AgNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), Dynamic Light Scattering (DLS), and Transmission electron microscopy (TEM) techniques. The obtained sizes are as follows: 85 ± 15 nm, 70 ± 10 nm, 50 ± 10 nm, and 28-40 nm. The UV-vis spectroscopy revealed a shift in the absorbance peaks from 400 to 446 nm. The SEM method showed a spherical form in all of the samples. The element silver was detected in the EDX examination, along with the presence of oxygen (O) and carbon (C). The FTIR analysis revealed that the peaks seen at 3307 cm-1 were attributed to the stretching of O-H bonds, while the mountain at 1638 cm-1 belonged to the extension of N-H bonds (amide A). Additionally, the band observed at 1638 cm-1 indicated the presence of CO bonds (amide I).The 2140 cm-1 and 1302 cm-1 peaks may be attributed to the C2H2 group present in the plant components and the N-H bending (Amide III), respectively. The XRD pattern indicates that the synthesis process resulted in the formation of crystalline AgNPs. The particle sizes measured using DLS were 121 nm, 96.36 nm, 82.3 nm, and 48.50 nm. The TEM approach revealed that all samples had a spherical morphology with varying sizes: 80-100 nm, 50-80 nm, 40-60 nm, and 28-42 nm. The synthesized AgNPs were tested for their antibacterial properties against the pathogenic pathogens Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus). The influence of AgNPs on bacteria was amplified as the particle size decreased, resulting in a larger inhibitory zone for the smaller particles.

3.
Environ Sci Pollut Res Int ; 28(30): 41479-41491, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33783704

RESUMO

One of the important ways to the efficiently use of low-grade thermal energy is the adsorption refrigeration technology. However, it has some drawbacks such as low specific cooling power and coefficient of performance, especially under using the conventional adsorption pairs. Therefore, new adsorption pairs are tested in solar adsorption ice-maker and compared with other conventional pairs data from open literature to find the tendency of improving the solar adsorption ice-maker performance. The experimental test rig has been built in Upper Egypt in Qena City. Four different new adsorption pairs of granular activated carbon/R-410A, granular activated carbon/R-511A, Maxsorb III/R-410A, and Maxsorb III/R-511A are used. It is demonstrated that Maxsorb III/R-511A pair based solar adsorption ice-maker produced the highest values for specific cooling power, coefficient of performance, and ice production per 1 kg of adsorbent of approximately 226.7 W/kgads, 0.197, and 1.96 kg/kgads, respectively. While granular activated carbon/R-410A based solar adsorption ice-maker produced the lowest values of ice production per 1 kg of adsorbent and coefficient of performance of 1.38 kg/kgads and 0.104, respectively. Moreover, it can be concluded that the tested pairs are feasible to be used in solar adsorption ice-maker systems, especially in such hot climate of Upper Egypt for food and vaccine preservation and storage.


Assuntos
Gelo , Luz Solar , Adsorção , Carvão Vegetal , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA