Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol Neurosurg Psychiatry ; 94(9): 670-680, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414536

RESUMO

BACKGROUND: While obesity in midlife is a risk factor for dementia, several studies suggested that obesity also protected against dementia, hence so-called obesity paradox. The current study aims to address the relationship between apolipoprotein E (APOE) genotype and obesity in dementia. METHODS: Clinical and neuropathological records of the National Alzheimer's Coordinating Center (NACC) in the USA, which longitudinally followed approximately 20 000 subjects with different cognitive statues, APOE genotype and obesity states, were reviewed. RESULTS: Obesity was associated with cognitive decline in early elderly cognitively normal individuals without APOE4, especially those with APOE2. Neuropathological analyses adjusted for dementia status showed that APOE2 carriers tended to have more microinfarcts and haemorrhages due to obesity. On the other hand, obesity was associated with a lower frequency of dementia and less cognitive impairment in individuals with mild cognitive impairment or dementia. Such trends were particularly strong in APOE4 carriers. Obesity was associated with fewer Alzheimer's pathologies in individuals with dementia. CONCLUSIONS: Obesity may accelerate cognitive decline in middle to early elderly cognitive normal individuals without APOE4 likely by provoking vascular impairments. On the other hand, obesity may ease cognitive impairment in both individuals with dementia and individuals at the predementia stage, especially those with APOE4, through protecting against Alzheimer's pathologies. These results support that APOE genotype modifies the obesity paradox in dementia.


Assuntos
Doença de Alzheimer , Idoso , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Obesidade/complicações , Obesidade/genética , Paradoxo da Obesidade
2.
J Neuropathol Exp Neurol ; 80(7): 652-662, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34283221

RESUMO

Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aß accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo
3.
J Neuroinflammation ; 18(1): 86, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33812385

RESUMO

BACKGROUND: Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS: Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS: Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION: BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.


Assuntos
Circulação Cerebrovascular/genética , Deleção de Genes , Proteínas Imediatamente Precoces/deficiência , Proteínas Imediatamente Precoces/genética , Neuroglia/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Substância Branca/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/patologia , Substância Branca/patologia
4.
J Diabetes Investig ; 12(6): 920-930, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417747

RESUMO

AIMS/INTRODUCTION: Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. MATERIALS AND METHODS: Clonal pancreatic ß-cells MIN6-K8, wild-type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal ß-cells (Glud1KOßCL), and glutamate-oxaloacetate transaminase 1 (GOT1) knockout clonal ß-cells (Got1KOßCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+ ]i ) was also measured. RESULTS: Glutamine dose-dependently amplified insulin secretion in the presence of high glucose in both MIN6-K8 cells and Glud1KOßCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine-amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+ ]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm-Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+ ]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm-Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal ß-cells MIN6-m14, which otherwise exhibit no insulin secretory response to glucose. CONCLUSIONS: Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine-amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose-induced insulin secretion.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Aspartato Aminotransferase Citoplasmática , Células Cultivadas , Glucose/metabolismo , Glutamato Desidrogenase , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Transdução de Sinais
5.
Diabetes ; 67(9): 1795-1806, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954738

RESUMO

ß-Cell-ß-cell interactions are required for normal regulation of insulin secretion. We previously found that formation of spheroid clusters (called K20-SC) from MIN6-K20 clonal ß-cells lacking incretin-induced insulin secretion (IIIS) under monolayer culture (called K20-MC) drastically induced incretin responsiveness. Here we investigated the mechanism by which an incretin-unresponsive state transforms to an incretin-responsive state using K20-SC as a model. Glutamate production by glucose through the malate-aspartate shuttle and cAMP signaling, both of which are critical for IIIS, were enhanced in K20-SC. SC formed from ß-cells deficient for aspartate aminotransferase 1, a critical enzyme in the malate-aspartate shuttle, exhibited reduced IIIS. Expression of the sodium-coupled neutral amino acid transporter 5 (SNAT5), which is involved in glutamine transport, was downregulated in K20-SC and pancreatic islets of normal mice but was upregulated in K20-MC and islets of rodent models of obesity and diabetes, both of which exhibit impaired IIIS. Inhibition of SNAT5 significantly increased cellular glutamate content and improved IIIS in islets of these models and in K20-MC. These results suggest that suppression of SNAT5 activity, which results in increased glutamate production, and enhancement of cAMP signaling endows incretin-unresponsive ß-cells with incretin responsiveness.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Incretinas/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Modelos Biológicos , Obesidade/tratamento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Células Clonais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Resistência a Medicamentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/ultraestrutura , Masculino , Camundongos Endogâmicos , Microscopia Eletrônica de Transmissão , Obesidade/metabolismo , Obesidade/patologia , Interferência de RNA , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/ultraestrutura , Técnicas de Cultura de Tecidos
6.
PLoS One ; 12(11): e0187213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29091932

RESUMO

Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic ß-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse ß-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) ß-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, ß-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO ß-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in ß-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying ß-cells by simultaneous disruption of multiple genes.


Assuntos
Aspartato Aminotransferases/metabolismo , Ácido Glutâmico/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Aspartato Aminotransferases/genética , Linhagem Celular , Secreção de Insulina , Camundongos , Camundongos Knockout , Mutação , Proteínas Vesiculares de Transporte de Glutamato/genética
7.
J Diabetes Investig ; 7 Suppl 1: 38-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27186354

RESUMO

Insulin secretion from the pancreatic ß-cell (referred to as ß-cell hereafter) plays a central role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to the development of diabetes and, therefore, is an important target for treatment of the disease. Cyclic adenosine monophosphate is a key second messenger in ß-cells that amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion through cyclic adenosine monophosphate signaling in ß-cells, which is the basis for the incretin-based diabetes therapies now being used worldwide. Despite its importance, the interaction between glucose metabolism and incretin/cyclic adenosine monophosphate signaling in ß-cells has long been unknown. A recent study showed that cytosolic glutamate produced by glucose metabolism in ß-cells is a key signal in incretin-induced insulin secretion. Here we review the physiological and pathophysiological roles of ß-cell glutamate signaling in incretin-induced insulin secretion.


Assuntos
Glucose/metabolismo , Ácido Glutâmico/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Metabolômica , Obesidade/metabolismo , Transdução de Sinais
8.
J Diabetes Res ; 2015: 261418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961052

RESUMO

We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Intolerância à Glucose/fisiopatologia , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Estado Pré-Diabético/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade/genética , Estado Pré-Diabético/genética , Ratos , Ratos Zucker , Receptores para Leptina/genética
9.
Cell Rep ; 9(2): 661-73, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373904

RESUMO

Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting ß cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.


Assuntos
AMP Cíclico/metabolismo , Exocitose , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Incretinas/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Metaboloma , Camundongos , Ratos , Ratos Wistar , Vesículas Secretórias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA