Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 30518-30533, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035922

RESUMO

The present study is aimed at developing an innovative method for efficient cancer cell destruction by exploiting the magnetomechanical actuation (MMA) of Fe-Cr-Nb-B magnetic particles (MPs), which are loaded with clinically approved chemotherapeutic drugs. To achieve this objective, Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles were produced by mechanically grinding amorphous ribbon precursors with the same composition. These nanoparticles display high anisotropy, a parallelepipedic shape with an amorphous structure, and a ferromagnetic behavior. MPs were loaded with the antitumoral drugs mitoxantrone (MTX) or doxorubicin (DOX). In our study, we used adipose-derived mesenchymal stem cells and human osteosarcoma cells to test drug-loaded MPs for their biocompatibility, cytotoxicity, and cellular internalization. Further tests involved exposing cells to magnetomechanical actuation and simultaneous MPs-targeted chemotherapy followed by cell viability/death assays, such as MTT and LDH, and live/dead cell staining. Results demonstrate that cancer cell death was induced by the synergistic action of chemotherapeutic drugs and magnetomechanical actuation. The nanoparticle vehicles helped overcome drug resistance, decreasing the high dose of drugs used in conventional therapies as well as the time intervals needed for MMA to affect cancer cell viability. The proposed approach highlights the possibility of using a new, targeted, and effective cancer treatment with very few side effects.

2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569290

RESUMO

(1) Osteoarthritis (OA) is a progressive joint degenerative disease that currently has no cure. Limitations in the development of innovative disease modifying therapies are related to the complexity of the underlying pathogenic mechanisms. In addition, there is the unmet need for efficient drug delivery methods. Magnetic nanoparticles (MNPs) have been proposed as an efficient modality for the delivery of bioactive molecules within OA joints, limiting the side effects associated with systemic delivery. We previously demonstrated MNP's role in increasing cell proliferation and chondrogenesis. In the design of intra-articular therapies for OA, the combined NE-MNP delivery system could provide increased stability and biological effect. (2) Proprietary Fe3O4 MNPs formulated as oil-in-water (O/W) magneto nanoemulsions (MNEs) containing ascorbic acid and dexamethasone were tested for size, stability, magnetic properties, and in vitro biocompatibility with human primary adipose mesenchymal cells (ADSC), cell mobility, and chondrogenesis. In vivo biocompatibility was tested after systemic administration in mice. (3) We report high MNE colloidal stability, magnetic properties, and excellent in vitro and in vivo biocompatibility. By increasing ADSC migration potential and chondrogenesis, MNE carrying dexamethasone and ascorbic acid could reduce OA symptoms while protecting the cartilage layer.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Cartilagem , Osteoartrite/patologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fenômenos Magnéticos , Condrogênese , Cartilagem Articular/patologia
3.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143558

RESUMO

CoPt alloys with Pt contents from 15 to 90% were prepared using low-cost electrochemical deposition. Different samples were synthesized from electrochemical baths at pH = 2.5 and 5.5 in a solution with and without saccharin as an additive. The morphology, composition and crystalline structure of the as-prepared samples were investigated by High Resolution-Scanning Electron Microscopy (HR-SEM), Atomic Force Microscopy (AFM), Ultra-high Resolution-Transmission Electron Microscopy (UHR-TEM), Energy-Dispersive X-ray Spectroscopy (EDX), and X-ray Diffraction (XRD). XRD investigations revealed that fcc crystalline structure transforms into hcp crystalline structure when the pH of the electrochemical bath is increased from 2.5 to 5.5 as well as when saccharin is added to the electrochemical bath. The catalytic performance of the CoPt alloys for the nitro to amino phenol compounds conversion was investigated for all the prepared samples, and the results show that the conversion degree increases (from 11.4 to 96.5%) even though the Pt content in the samples decreases. From the samples prepared from the electrochemical bath with saccharin, a study regarding the effect of contact time was performed. The results indicated that after only 5 min, the CoPt sample prepared at pH = 5.5 in the presence of saccharin completely converted the nitro compound to an amino compound.

4.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897529

RESUMO

"Advanced Materials for Water Remediation" is a Special Issue of Materials, which will take into consideration all the papers discussing the synthesis, characterization and application of advanced materials for water remediation [...].

5.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440755

RESUMO

The in situ spectroelectrochemical cyclic voltammetric studies of the antimony-monocapped nickel(II) and iron(II) tris-pyridineoximates with a labile triethylantimony cross-linking group and Zr(IV)/Hf(IV) phthalocyaninate complexes were performed in order to understand the nature of the redox events in the molecules of heterodinuclear zirconium(IV) and hafnium(IV) phthalocyaninate-capped derivatives. Electronic structures of their 1e-oxidized and 1e-electron-reduced forms were experimentally studied by electron paramagnetic resonance (EPR) spectroscopy and UV-vis-near-IR spectroelectrochemical experiments and supported by density functional theory (DFT) calculations. The investigated hybrid molecular systems that combine a transition metal (pseudo)clathrochelate and a Zr/Hf-phthalocyaninate moiety exhibit quite rich redox activity both in the cathodic and in the anodic region. These binuclear compounds and their precursors were tested as potential catalysts in oxidation reactions of cyclohexane and the results are discussed.


Assuntos
Complexos de Coordenação/química , Cicloexanos/química , Háfnio/química , Zircônio/química , Catálise , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Indóis/química , Ferro/química , Isoindóis , Modelos Moleculares , Níquel/química , Oxirredução , Oximas/química , Piridinas/química
6.
Polymers (Basel) ; 13(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440804

RESUMO

Novel hybrid inorganic CoFe2O4/carboxymethyl cellulose (CMC) polymeric framework nanobeads-type adsorbents with tailored magnetic properties were synthesized by a combination of coprecipitation and flash-cooling technology. Precise self-assembly engineering of their shape and composition combined with deep testing for cadmium removal from wastewater are investigated. The development of a single nanoscale object with controllable composition and spatial arrangement of CoFe2O4 (CF) nanoparticles in carboxymethyl cellulose (CMC) as polymeric matrix, is giving new boosts to treatments of wastewaters containing heavy metals. The magnetic nanobeads were characterized by means of scanning electron microscopy (SEM), powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TG), and vibrational sample magnetometer (VSM). The magnetic properties of CF@CMC sample clearly exhibit ferromagnetic nature. Value of 40.6 emu/g of saturation magnetization would be exploited for magnetic separation from aqueous solution. In the adsorptions experiments the assessment of equilibrium and kinetic parameters were carried out by varying adsorbent dosage, contact time and cadmium ion concentration. The kinetic behavior of adsorption process was best described by pseudo-second-order model and the Langmuir isotherm was fitted best with maximum capacity uptake of 44.05 mg/g.

7.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010088

RESUMO

In this research, we reported on the formation of highly porous foam SrTiO3/NiFe2O4 (100-xSTO/xNFO) heterostructure by joint solid-state and sol-gel auto-combustion techniques. The colloidal assembly process is discussed based on the weight ratio x (x = 0, 25, 50, 75, and 100 wt %) of NiFe2O4 in the 100-xSTO/xNFO system. We proposed a mechanism describing the highly porous framework formation involving the self-assembly of SrTiO3 due to the gelation process of the nickel ferrite. We used a series of spectrophotometric techniques, including powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 adsorption isotherms method, UV-visible diffuse reflectance spectra (UV-Vis DRS), vibrating sample magnetometer (VSM), and dielectric measurements, to investigate the structural, morphological, optical, magnetic, and dielectric properties of the synthesized samples. As revealed by FE-SEM analysis and textural characteristics, SrTiO3-NiFe2O4 nanocomposite self-assembled into a porous foam with an internally well-defined porous structure. HRTEM characterization certifies the distinctive crystalline phases obtained and reveals that SrTiO3 and NiFe2O4 nanoparticles were closely connected. The specific magnetization, coercivity, and permittivity values are higher in the 75STO/25NFO heterostructure and do not decrease proportionally to the amount of non-magnetic SrTiO3 present in the composition of samples.

8.
Mater Sci Eng C Mater Biol Appl ; 117: 111288, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919649

RESUMO

This work addresses current direction of the nanoparticles-based systems intended for cancer therapy by developing a newly-formulated innovative chemically-engineered anti-tumor composite consisting in a magnetic, fluorescent, lipophilic, and biologically-active carbon heterostructure capable by itself or through coupling with a chemotherapeutic agent to selectively induce tumor cell death. The anti-tumor compound was synthesized through a modified sol-gel method by addition of a low-cost molecule with recently proven anti-tumor properties which was combusted and flash-cooled along with magnetic iron oxides precursors at 250 °C. The synthesized compound consisted in carbon dots, graphene and hematite nanoparticles which endowed the composite with unique simultaneous fluorescence, magnetic and anti-tumor properties. The in-vitro cytotoxicity performed on tumor cells (human osteosarcoma) and normal cells (fibroblasts) showed a selective cytotoxic effect induced after 24 h of treatment by the drug-free composite, leading to a cell death of 37%, for a composite concentration of 0.01 mg/mL per 104 tumor cells, whereas the composite loaded with an antitumor drug (mitoxantrone) boosted the cell death effect to 47% for similar exposure conditions. The method shows high potential as it boosts drug transfer within tumor cells. Different antitumor drugs already in clinical use can be used following their separate or in-cocktail controlled combustion.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacologia , Carbono , Humanos , Fenômenos Magnéticos , Magnetismo
9.
Mater Sci Eng C Mater Biol Appl ; 109: 110652, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228923

RESUMO

Magnetic nanoparticles (MNPs) are versatile tools for various applications in biotechnology and nanomedicine. MNPs-mediated cell tracking, targeting and imaging are increasingly studied for regenerative medicine applications in cell therapy and tissue engineering. Mechanical stimulation influences mesenchymal stem cell differentiation. Here we show that MNPs-mediated magneto-mechanical stimulation of human primary adipose derived stem cells (ADSCs) exposed to variable magnetic field (MF) influences their adipogenic and osteogenic differentiation. ADSCs loaded with biocompatible magnetite nanoparticles of 6.6 nm, and with an average load of 21 picograms iron/cell were exposed to variable low intensity (0.5 mT - LMF) and higher intensity magnetic fields (14.7 and 21.6 mT - HMF). Type, duration, intensity and frequency of MF differently affect differentiation. Short time (2 days) intermittent exposure to LMF increases adipogenesis while longer (7 days) intermittent as well as continuous exposure favors osteogenesis. HMF (21.6 mT) short time intermittent exposure favors osteogenesis. Different exposure protocols can be used to increase differentiation dependently on expected results. Magnetic remotely-actuated MNPs up-taken by ADSCs promotes the shift towards osteoblastic lineage. ADSCs-MNPs under MF exposure could be used for enabling osteoblastic conversion during cell therapy for systemic osteoporosis. Current results enable further in vivo studies investigating the role of remotely-controlled magnetically actuated ADSCs-MNPs for the treatment of osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/química , Osteogênese , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Humanos , Células-Tronco/citologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-24895780

RESUMO

We report here the effectiveness of gas chromatography mass spectrometry techniques in establishing the ferrite-associated photocatalytic degradation mechanism of pesticide 2,4-dinitrophenol (2,6-DNP). Unlike the previously discussed DNP-degradation mechanisms that involve either oxidation or reduction reactions, ferrite-based ultraviolet (UV) photodegradation of DNP affords the nontoxic 6-hydroxy-3,5-dinitrohexa-2,4-dienal by an unusual water addition to the benzene core. We searched for and demonstrated the presence of an epoxide of DNP within the photodegradation process, which may unambiguously explain the novel photochemical mechanism. During the 15 min UV photoinduced process, DNP degradation efficiency on the zinc ferrite catalyst was calculated to be 82%, whereas the first-order kinetic rate constant k was as high as 3.4 x 10(-2)min(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA