Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36984335

RESUMO

Titanium and its based alloys are frequently selected for designing biomedical implants and it is thus necessary to study as detailed as possible their corrosion behavior in biological solutions, such as those in the human body environment. In this paper, with the use of molecular orbital calculation, we designed and developed alloys in the Ti-19Mo-xW system (x = 7, 8, 9, and 10 wt%) and investigated the influence of different contents of tungsten on the behavior of Ti-19Mo-xW alloy samples following corrosion in simulated body fluid (SBF). The values of Bo¯ (bond order) and Md¯ (the metal-orbital energy level) were calculated for each alloy and correlations were established between Bo¯ and the content of tungsten. It was found that with the increase in tungsten content, the value of Bo¯ increases. Regarding the values of the corrosion resistance in SBF that resulted from the investigated alloys, the Ti19Mo7W alloy is distinguished by the lowest value of the corrosion current density and the lowest corrosion rate.

2.
Materials (Basel) ; 12(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621182

RESUMO

The ß-Ti alloys have attracted the attention of researchers due to their excellent properties and their remarkable biocompatibility. The present study evaluated the mechanical behavior analysis (hardness, compressive strength, and modulus of elasticity) of the Ti-15Mo-W system. For experimental research, we chose the TiMo15 biocompatible alloy as a starting material. In order to improve the mechanical properties, we added tungsten amounts of 3.88 to 12.20 wt.% and analyzed the results obtained. The successive melting of the samples was done using a vacuum arc furnace in a copper crucible cooled with water. Following micro-structural investigations, we found this alloy possessed a homogeneous structure and showed ß-phase predominance. The investigated alloys have good mechanical properties-the mean Vickers micro-hardness values are between 251 to 321 HV, the compressive strength values range from 717 to 921 MPa, and the modulus of elasticity is between 17.86 and 45.35 GPa. These results are compatible to the requirements of a metallic material for medical applications as artificial implant devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA